估计有限总体变异系数的对数积比型估计器

M. A. Yunusa, Ahmed Audu, Awwal Adejumobi
{"title":"估计有限总体变异系数的对数积比型估计器","authors":"M. A. Yunusa, Ahmed Audu, Awwal Adejumobi","doi":"10.13005/ojps07.02.05","DOIUrl":null,"url":null,"abstract":"Estimation of population parameters have been a challenging aspect in sample survey for sometimes and many efforts have been made to enhance the exactness of the parameters of these estimators. We suggested the logarithmic-product-cum-ratio type estimator. Expression of the MSE of the intended estimator originated using the Taylor series technique. A numerical illustration was conducted and the results revealed that the modified work is ameliorated than sample means with other estimators observed.","PeriodicalId":299805,"journal":{"name":"Oriental Journal of Physical Sciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic-Product-Cum-Ratio Type Estimator for Estimating Finite Population Coefficient of Variation\",\"authors\":\"M. A. Yunusa, Ahmed Audu, Awwal Adejumobi\",\"doi\":\"10.13005/ojps07.02.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of population parameters have been a challenging aspect in sample survey for sometimes and many efforts have been made to enhance the exactness of the parameters of these estimators. We suggested the logarithmic-product-cum-ratio type estimator. Expression of the MSE of the intended estimator originated using the Taylor series technique. A numerical illustration was conducted and the results revealed that the modified work is ameliorated than sample means with other estimators observed.\",\"PeriodicalId\":299805,\"journal\":{\"name\":\"Oriental Journal of Physical Sciences\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oriental Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/ojps07.02.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojps07.02.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在抽样调查中,总体参数的估计一直是一个具有挑战性的方面,人们已经做了许多努力来提高这些估计器参数的准确性。我们建议使用对数积加比型估计器。预期估计量的MSE的表达式起源于泰勒级数技术。数值说明表明,在其他估计量下,修正后的结果比样本均值有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic-Product-Cum-Ratio Type Estimator for Estimating Finite Population Coefficient of Variation
Estimation of population parameters have been a challenging aspect in sample survey for sometimes and many efforts have been made to enhance the exactness of the parameters of these estimators. We suggested the logarithmic-product-cum-ratio type estimator. Expression of the MSE of the intended estimator originated using the Taylor series technique. A numerical illustration was conducted and the results revealed that the modified work is ameliorated than sample means with other estimators observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信