LeAp:领先的基于检测的软核近似乘法器,精度可调

Zahra Ebrahimi, Salim Ullah, Akash Kumar
{"title":"LeAp:领先的基于检测的软核近似乘法器,精度可调","authors":"Zahra Ebrahimi, Salim Ullah, Akash Kumar","doi":"10.1109/ASP-DAC47756.2020.9045171","DOIUrl":null,"url":null,"abstract":"Approximate multipliers are ubiquitously used in diverse applications by exploiting circuit simplification, mainly specialized for Application-Specific Integrated Circuit (ASIC) platforms. However, the intrinsic architectural specifications of Field-Programmable Gate Arrays (FPGAs) prohibited comparable resource gains when directly applying these techniques. LeAp is an area-, throughput-, and energy-efficient approximate multiplier for FPGAs which efficiently utilizes 6-input Look-up Tables (6-LUTs) and fast carry chains in its novel approximate log calculator to implement Mitchell’s algorithm. Moreover, three novel error-refinement schemes with negligible area overhead and independent from multiplier-size, have boosted accuracy to $\\gt 99$%. Experimental results obtained from Vivado, Artificial Neural Network (ANN) and image processing applications indicate superiority of proposed multiplier over accurate and state-of-the-art approximate counterparts. In particular, LeAp outperforms the 32x32 accurate multiplier by achieving 69.7%, 14.7%, 42.1%, and 37.1% improvement in area, throughput, power, and energy, respectively. The library of RTL and behavioral implementations will be open-sourced at https://cfaed.tu-dresden.de/pd-downloads.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"LeAp: Leading-one Detection-based Softcore Approximate Multipliers with Tunable Accuracy\",\"authors\":\"Zahra Ebrahimi, Salim Ullah, Akash Kumar\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate multipliers are ubiquitously used in diverse applications by exploiting circuit simplification, mainly specialized for Application-Specific Integrated Circuit (ASIC) platforms. However, the intrinsic architectural specifications of Field-Programmable Gate Arrays (FPGAs) prohibited comparable resource gains when directly applying these techniques. LeAp is an area-, throughput-, and energy-efficient approximate multiplier for FPGAs which efficiently utilizes 6-input Look-up Tables (6-LUTs) and fast carry chains in its novel approximate log calculator to implement Mitchell’s algorithm. Moreover, three novel error-refinement schemes with negligible area overhead and independent from multiplier-size, have boosted accuracy to $\\\\gt 99$%. Experimental results obtained from Vivado, Artificial Neural Network (ANN) and image processing applications indicate superiority of proposed multiplier over accurate and state-of-the-art approximate counterparts. In particular, LeAp outperforms the 32x32 accurate multiplier by achieving 69.7%, 14.7%, 42.1%, and 37.1% improvement in area, throughput, power, and energy, respectively. The library of RTL and behavioral implementations will be open-sourced at https://cfaed.tu-dresden.de/pd-downloads.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

近似乘法器通过简化电路被广泛应用于各种应用中,主要用于专用集成电路(ASIC)平台。然而,当直接应用这些技术时,现场可编程门阵列(fpga)固有的架构规范禁止了可比的资源收益。LeAp是一种适用于fpga的面积、吞吐量和节能近似乘法器,它在其新颖的近似对数计算器中有效地利用6输入查找表(6-LUTs)和快速携带链来实现Mitchell的算法。此外,三种新的误差改进方案可以忽略面积开销,并且与乘法器大小无关,将精度提高到99%。从Vivado、人工神经网络(ANN)和图像处理应用中获得的实验结果表明,所提出的乘法器优于精确的和最先进的近似乘法器。特别是,LeAp在面积、吞吐量、功耗和能量方面分别提高了69.7%、14.7%、42.1%和37.1%,优于32x32精确乘法器。RTL和行为实现库将在https://cfaed.tu-dresden.de/pd-downloads上开源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LeAp: Leading-one Detection-based Softcore Approximate Multipliers with Tunable Accuracy
Approximate multipliers are ubiquitously used in diverse applications by exploiting circuit simplification, mainly specialized for Application-Specific Integrated Circuit (ASIC) platforms. However, the intrinsic architectural specifications of Field-Programmable Gate Arrays (FPGAs) prohibited comparable resource gains when directly applying these techniques. LeAp is an area-, throughput-, and energy-efficient approximate multiplier for FPGAs which efficiently utilizes 6-input Look-up Tables (6-LUTs) and fast carry chains in its novel approximate log calculator to implement Mitchell’s algorithm. Moreover, three novel error-refinement schemes with negligible area overhead and independent from multiplier-size, have boosted accuracy to $\gt 99$%. Experimental results obtained from Vivado, Artificial Neural Network (ANN) and image processing applications indicate superiority of proposed multiplier over accurate and state-of-the-art approximate counterparts. In particular, LeAp outperforms the 32x32 accurate multiplier by achieving 69.7%, 14.7%, 42.1%, and 37.1% improvement in area, throughput, power, and energy, respectively. The library of RTL and behavioral implementations will be open-sourced at https://cfaed.tu-dresden.de/pd-downloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信