地震心电信号持续时域特征的自动识别

Jonathan S. Zia, Jacob P. Kimball, M. Shandhi, O. Inan
{"title":"地震心电信号持续时域特征的自动识别","authors":"Jonathan S. Zia, Jacob P. Kimball, M. Shandhi, O. Inan","doi":"10.1109/BHI.2019.8834555","DOIUrl":null,"url":null,"abstract":"In the field of cardiac monitoring, the seismocardiogram (SCG) measures the movement of the chest wall using accelerometers and gyroscopes. A key limitation of SCG signals is their sensitivity to transient signal disruptions primarily due to motion artifacts. This work describes a method for automated extraction of time-domain features in SCG signals in the presence of such artifacts, using an iterative method of clustering and re-sampling features to optimize consistency. The accelerometer (axl) and gyroscope (gyr) features extracted with this method are shown to correlate more strongly (median $R^{2}=0.88\\ (\\mathbf{axl}), 0.88 (\\mathbf{gyr})$) with the reference standard for pre-ejection period (PEP), impedance cardiography (ICG), than both peak-counting $(R^{2}=0.29\\ (\\mathbf{axl}), 0.48\\ (\\mathbf{gyr}))$ and manual labeling $(R^{2}=0.44\\ (\\mathbf{axl}), 0.38 (\\mathbf{gyr}))$ in the post-exercise period. This result has implications for the feasibility of at-home SCG monitoring.","PeriodicalId":281971,"journal":{"name":"2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automated Identification of Persistent Time-Domain Features in Seismocardiogram Signals\",\"authors\":\"Jonathan S. Zia, Jacob P. Kimball, M. Shandhi, O. Inan\",\"doi\":\"10.1109/BHI.2019.8834555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of cardiac monitoring, the seismocardiogram (SCG) measures the movement of the chest wall using accelerometers and gyroscopes. A key limitation of SCG signals is their sensitivity to transient signal disruptions primarily due to motion artifacts. This work describes a method for automated extraction of time-domain features in SCG signals in the presence of such artifacts, using an iterative method of clustering and re-sampling features to optimize consistency. The accelerometer (axl) and gyroscope (gyr) features extracted with this method are shown to correlate more strongly (median $R^{2}=0.88\\\\ (\\\\mathbf{axl}), 0.88 (\\\\mathbf{gyr})$) with the reference standard for pre-ejection period (PEP), impedance cardiography (ICG), than both peak-counting $(R^{2}=0.29\\\\ (\\\\mathbf{axl}), 0.48\\\\ (\\\\mathbf{gyr}))$ and manual labeling $(R^{2}=0.44\\\\ (\\\\mathbf{axl}), 0.38 (\\\\mathbf{gyr}))$ in the post-exercise period. This result has implications for the feasibility of at-home SCG monitoring.\",\"PeriodicalId\":281971,\"journal\":{\"name\":\"2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI.2019.8834555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2019.8834555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在心脏监测领域,地震心动图(SCG)使用加速度计和陀螺仪测量胸壁的运动。SCG信号的一个关键限制是它们对主要由运动伪影引起的瞬态信号中断的敏感性。这项工作描述了一种在存在此类伪像的情况下自动提取SCG信号时域特征的方法,使用聚类和重新采样特征的迭代方法来优化一致性。使用该方法提取的加速度计(axl)和陀螺仪(gyr)特征与预射期(PEP)、阻抗心动图(ICG)的参考标准的相关性(中位数$R^{2}=0.88\ (\mathbf{axl})、0.88 (\mathbf{gyr})$)比峰值计数$(R^{2}=0.29\ (\mathbf{axl})、0.48\ (\mathbf{gyr}))$和手动标记$(R^{2}=0.44\ (\mathbf{axl})、0.38 (\mathbf{gyr})$在运动后阶段的相关性更强。这一结果对在家监测SCG的可行性具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Identification of Persistent Time-Domain Features in Seismocardiogram Signals
In the field of cardiac monitoring, the seismocardiogram (SCG) measures the movement of the chest wall using accelerometers and gyroscopes. A key limitation of SCG signals is their sensitivity to transient signal disruptions primarily due to motion artifacts. This work describes a method for automated extraction of time-domain features in SCG signals in the presence of such artifacts, using an iterative method of clustering and re-sampling features to optimize consistency. The accelerometer (axl) and gyroscope (gyr) features extracted with this method are shown to correlate more strongly (median $R^{2}=0.88\ (\mathbf{axl}), 0.88 (\mathbf{gyr})$) with the reference standard for pre-ejection period (PEP), impedance cardiography (ICG), than both peak-counting $(R^{2}=0.29\ (\mathbf{axl}), 0.48\ (\mathbf{gyr}))$ and manual labeling $(R^{2}=0.44\ (\mathbf{axl}), 0.38 (\mathbf{gyr}))$ in the post-exercise period. This result has implications for the feasibility of at-home SCG monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信