基于关联规则挖掘的教学分析

Chen Weiyu, Jianan
{"title":"基于关联规则挖掘的教学分析","authors":"Chen Weiyu, Jianan","doi":"10.1109/ANTHOLOGY.2013.6784997","DOIUrl":null,"url":null,"abstract":"Association rule in data mining could found interesting link between a large amounts of data set. Using the improved Apriori algorithm on analyzing the grades of students' course, which revealed the relationship and influence on learning effect during each chapter, distinguish the key factors that affect their achievement. After that we can conclude valuable information to provide guidance for improving teaching and learning effectiveness.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Teaching analysis based on association rule mining\",\"authors\":\"Chen Weiyu, Jianan\",\"doi\":\"10.1109/ANTHOLOGY.2013.6784997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rule in data mining could found interesting link between a large amounts of data set. Using the improved Apriori algorithm on analyzing the grades of students' course, which revealed the relationship and influence on learning effect during each chapter, distinguish the key factors that affect their achievement. After that we can conclude valuable information to provide guidance for improving teaching and learning effectiveness.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6784997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据挖掘中的关联规则可以发现大量数据集之间有趣的联系。利用改进的Apriori算法对学生的课程成绩进行分析,揭示各章节对学习效果的关系和影响,区分影响学生成绩的关键因素。然后我们可以总结出有价值的信息,为提高教与学的有效性提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teaching analysis based on association rule mining
Association rule in data mining could found interesting link between a large amounts of data set. Using the improved Apriori algorithm on analyzing the grades of students' course, which revealed the relationship and influence on learning effect during each chapter, distinguish the key factors that affect their achievement. After that we can conclude valuable information to provide guidance for improving teaching and learning effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信