“骨架攀登”:快速等面与较少的三角形

T. Poston, H. Nguyen, P. Heng, T. Wong
{"title":"“骨架攀登”:快速等面与较少的三角形","authors":"T. Poston, H. Nguyen, P. Heng, T. Wong","doi":"10.1109/PCCGA.1997.626185","DOIUrl":null,"url":null,"abstract":"Skeleton climbing is an algorithm that builds triangulated isosurfaces in 3D grid data, more economically than marching cubes, and without the time penalty of current mesh decimation algorithms. Building the surface from its intersections with grid edges (1-skeleton), then faces (2-skeleton), then cubes (3-skeleton), treats the data in a uniform way; this allows a 25% reduction in the number of triangles produced, while still creating a true separating surface at similar speed.","PeriodicalId":128371,"journal":{"name":"Proceedings The Fifth Pacific Conference on Computer Graphics and Applications","volume":"43 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"\\\"Skeleton climbing\\\": fast isosurfaces with fewer triangles\",\"authors\":\"T. Poston, H. Nguyen, P. Heng, T. Wong\",\"doi\":\"10.1109/PCCGA.1997.626185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeleton climbing is an algorithm that builds triangulated isosurfaces in 3D grid data, more economically than marching cubes, and without the time penalty of current mesh decimation algorithms. Building the surface from its intersections with grid edges (1-skeleton), then faces (2-skeleton), then cubes (3-skeleton), treats the data in a uniform way; this allows a 25% reduction in the number of triangles produced, while still creating a true separating surface at similar speed.\",\"PeriodicalId\":128371,\"journal\":{\"name\":\"Proceedings The Fifth Pacific Conference on Computer Graphics and Applications\",\"volume\":\"43 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings The Fifth Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCGA.1997.626185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings The Fifth Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCGA.1997.626185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

骨架爬升是一种在三维网格数据中构建三角等值面的算法,比行进立方体更经济,并且没有当前网格抽取算法的时间损失。从其与网格边(1-骨架),面(2-骨架),然后立方体(3-骨架)的相交处构建曲面,以统一的方式处理数据;这使得产生的三角形数量减少了25%,同时仍然以相同的速度创建真正的分离表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Skeleton climbing": fast isosurfaces with fewer triangles
Skeleton climbing is an algorithm that builds triangulated isosurfaces in 3D grid data, more economically than marching cubes, and without the time penalty of current mesh decimation algorithms. Building the surface from its intersections with grid edges (1-skeleton), then faces (2-skeleton), then cubes (3-skeleton), treats the data in a uniform way; this allows a 25% reduction in the number of triangles produced, while still creating a true separating surface at similar speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信