一个超低延迟7.8-13.6 pJ/b可重构神经网络辅助极地解码器,支持多码长

Chieh-Fang Teng, Chun-Hsiang Chen, A. Wu
{"title":"一个超低延迟7.8-13.6 pJ/b可重构神经网络辅助极地解码器,支持多码长","authors":"Chieh-Fang Teng, Chun-Hsiang Chen, A. Wu","doi":"10.1109/vlsicircuits18222.2020.9163022","DOIUrl":null,"url":null,"abstract":"To meet with the stringent requirements of ultra-low latency communication in 5G, this work presents a polar decoder fabricated in TSMC 40nm CMOS featuring: 1) World's first neural network-assisted decoder chip with 8× improvement of convergence rate. 2) Fully reconfigurable architecture to support multi-code length operations with a 2-to-8× hardware utilization rate. 3) Optimized fixed-point design of processing element (PE) to reduce 73% area and 67% power consumption.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Ultra-Low Latency 7.8–13.6 pJ/b Reconfigurable Neural Network-Assisted Polar Decoder with Multi-Code Length Support\",\"authors\":\"Chieh-Fang Teng, Chun-Hsiang Chen, A. Wu\",\"doi\":\"10.1109/vlsicircuits18222.2020.9163022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet with the stringent requirements of ultra-low latency communication in 5G, this work presents a polar decoder fabricated in TSMC 40nm CMOS featuring: 1) World's first neural network-assisted decoder chip with 8× improvement of convergence rate. 2) Fully reconfigurable architecture to support multi-code length operations with a 2-to-8× hardware utilization rate. 3) Optimized fixed-point design of processing element (PE) to reduce 73% area and 67% power consumption.\",\"PeriodicalId\":252787,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Circuits\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/vlsicircuits18222.2020.9163022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsicircuits18222.2020.9163022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为满足5G超低延迟通信的严格要求,本工作提出了一种采用台积电40nm CMOS制造的极性解码器,具有以下特点:1)世界上第一个神经网络辅助解码器芯片,收敛速度提高8倍。2)完全可重构架构,支持多码长操作,硬件利用率为2- 8倍。3)加工元件(PE)定点优化设计,面积减少73%,功耗减少67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ultra-Low Latency 7.8–13.6 pJ/b Reconfigurable Neural Network-Assisted Polar Decoder with Multi-Code Length Support
To meet with the stringent requirements of ultra-low latency communication in 5G, this work presents a polar decoder fabricated in TSMC 40nm CMOS featuring: 1) World's first neural network-assisted decoder chip with 8× improvement of convergence rate. 2) Fully reconfigurable architecture to support multi-code length operations with a 2-to-8× hardware utilization rate. 3) Optimized fixed-point design of processing element (PE) to reduce 73% area and 67% power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信