{"title":"心电信号压缩感知的高斯字典","authors":"Giulia Da Poian, R. Bernardini, R. Rinaldo","doi":"10.1109/BIOMS.2014.6951540","DOIUrl":null,"url":null,"abstract":"Compressive Sensing (CS) is a newly introduced signal processing technique that enables to recover sparse signals from fewer samples than the Shannon sampling theorem would typically require. It is based on the assumption that, for a sparse signal, a small collection of linear measurements contains enough information to allow its reconstruction. Combining the acquisition and compression stages, CS is a very promising technique to develop ultra low power wireless bio-signal monitoring systems. In this paper we present a Compressive Sensing framework for ECG signals based on a universal Gaussian over-complete dictionary that permits to successfully increase the reconstruction quality performance. The purpose of the proposed dictionary is to improve ECG signal sparsity in order to achieve a higher compression ratio. Numerical experiments demonstrate that our method achieves improved performance with respect to state-of-the-art CS schemes.","PeriodicalId":175781,"journal":{"name":"2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Gaussian dictionary for Compressive Sensing of the ECG signal\",\"authors\":\"Giulia Da Poian, R. Bernardini, R. Rinaldo\",\"doi\":\"10.1109/BIOMS.2014.6951540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive Sensing (CS) is a newly introduced signal processing technique that enables to recover sparse signals from fewer samples than the Shannon sampling theorem would typically require. It is based on the assumption that, for a sparse signal, a small collection of linear measurements contains enough information to allow its reconstruction. Combining the acquisition and compression stages, CS is a very promising technique to develop ultra low power wireless bio-signal monitoring systems. In this paper we present a Compressive Sensing framework for ECG signals based on a universal Gaussian over-complete dictionary that permits to successfully increase the reconstruction quality performance. The purpose of the proposed dictionary is to improve ECG signal sparsity in order to achieve a higher compression ratio. Numerical experiments demonstrate that our method achieves improved performance with respect to state-of-the-art CS schemes.\",\"PeriodicalId\":175781,\"journal\":{\"name\":\"2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOMS.2014.6951540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOMS.2014.6951540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gaussian dictionary for Compressive Sensing of the ECG signal
Compressive Sensing (CS) is a newly introduced signal processing technique that enables to recover sparse signals from fewer samples than the Shannon sampling theorem would typically require. It is based on the assumption that, for a sparse signal, a small collection of linear measurements contains enough information to allow its reconstruction. Combining the acquisition and compression stages, CS is a very promising technique to develop ultra low power wireless bio-signal monitoring systems. In this paper we present a Compressive Sensing framework for ECG signals based on a universal Gaussian over-complete dictionary that permits to successfully increase the reconstruction quality performance. The purpose of the proposed dictionary is to improve ECG signal sparsity in order to achieve a higher compression ratio. Numerical experiments demonstrate that our method achieves improved performance with respect to state-of-the-art CS schemes.