弥合FPGA设计和HDL电路描述之间的差距

Dustin Peterson, O. Bringmann, Thomas Schweizer, W. Rosenstiel
{"title":"弥合FPGA设计和HDL电路描述之间的差距","authors":"Dustin Peterson, O. Bringmann, Thomas Schweizer, W. Rosenstiel","doi":"10.1109/FPT.2013.6718366","DOIUrl":null,"url":null,"abstract":"FPGA circuit implementation is a unidirectional and time-consuming process. Existing approaches like the incremental synthesis try to shorten it, but still need to execute the whole flow for a changed circuit partition. Other approaches circumvent process stages by providing bidirectional mappings between their results. In this paper we propose an approach to provide a bidirectional link between an FPGA design and its HDL code. This link enables the circumvention of the most time-consuming stages (synthesis, mapping, placing, routing) of the FPGA circuit implementation. We implemented our approach in a Java-based EDA tool library, called Static Mapping Library (StML). We demonstrate its applicability by means of hardware debugging and an RTL-based injection of permanent faults, built on top of the StML. Experimental results illustrate that a mapping coverage between 98.5%-100.0% can be obtained, which substantiates the feasibility of this approach. Further experiments illustrate a controllable tradeoff between area overhead, circuit granularity and mapping granularity. With the finest mapping granularity, the area overhead has been between 1.8% and 60.2% for RTL-based circuits. The speedup of the proposed fault injection method has been estimated to be up to 6x for the tested circuits.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"StML: Bridging the gap between FPGA design and HDL circuit description\",\"authors\":\"Dustin Peterson, O. Bringmann, Thomas Schweizer, W. Rosenstiel\",\"doi\":\"10.1109/FPT.2013.6718366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FPGA circuit implementation is a unidirectional and time-consuming process. Existing approaches like the incremental synthesis try to shorten it, but still need to execute the whole flow for a changed circuit partition. Other approaches circumvent process stages by providing bidirectional mappings between their results. In this paper we propose an approach to provide a bidirectional link between an FPGA design and its HDL code. This link enables the circumvention of the most time-consuming stages (synthesis, mapping, placing, routing) of the FPGA circuit implementation. We implemented our approach in a Java-based EDA tool library, called Static Mapping Library (StML). We demonstrate its applicability by means of hardware debugging and an RTL-based injection of permanent faults, built on top of the StML. Experimental results illustrate that a mapping coverage between 98.5%-100.0% can be obtained, which substantiates the feasibility of this approach. Further experiments illustrate a controllable tradeoff between area overhead, circuit granularity and mapping granularity. With the finest mapping granularity, the area overhead has been between 1.8% and 60.2% for RTL-based circuits. The speedup of the proposed fault injection method has been estimated to be up to 6x for the tested circuits.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

FPGA电路的实现是一个单向且耗时的过程。现有的方法,如增量合成,试图缩短它,但仍然需要执行整个流程的改变电路分区。其他方法通过提供结果之间的双向映射来绕过过程阶段。在本文中,我们提出了一种在FPGA设计和其HDL代码之间提供双向链接的方法。这个链接可以绕过FPGA电路实现中最耗时的阶段(合成、映射、放置、路由)。我们在一个称为静态映射库(StML)的基于java的EDA工具库中实现了我们的方法。我们通过硬件调试和基于rtl的永久故障注入(构建在StML之上)来证明其适用性。实验结果表明,该方法的映射覆盖率在98.5% ~ 100.0%之间,验证了该方法的可行性。进一步的实验证明了面积开销、电路粒度和映射粒度之间的可控权衡。使用最精细的映射粒度,基于rtl的电路的面积开销在1.8%到60.2%之间。所提出的故障注入方法对测试电路的加速可达6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
StML: Bridging the gap between FPGA design and HDL circuit description
FPGA circuit implementation is a unidirectional and time-consuming process. Existing approaches like the incremental synthesis try to shorten it, but still need to execute the whole flow for a changed circuit partition. Other approaches circumvent process stages by providing bidirectional mappings between their results. In this paper we propose an approach to provide a bidirectional link between an FPGA design and its HDL code. This link enables the circumvention of the most time-consuming stages (synthesis, mapping, placing, routing) of the FPGA circuit implementation. We implemented our approach in a Java-based EDA tool library, called Static Mapping Library (StML). We demonstrate its applicability by means of hardware debugging and an RTL-based injection of permanent faults, built on top of the StML. Experimental results illustrate that a mapping coverage between 98.5%-100.0% can be obtained, which substantiates the feasibility of this approach. Further experiments illustrate a controllable tradeoff between area overhead, circuit granularity and mapping granularity. With the finest mapping granularity, the area overhead has been between 1.8% and 60.2% for RTL-based circuits. The speedup of the proposed fault injection method has been estimated to be up to 6x for the tested circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信