电力系统动态状态估计中PMU最优放置评估

Jinghe Zhang, G. Welch, G. Bishop, Zhenyu Huang
{"title":"电力系统动态状态估计中PMU最优放置评估","authors":"Jinghe Zhang, G. Welch, G. Bishop, Zhenyu Huang","doi":"10.1109/ISGTEUROPE.2010.5639006","DOIUrl":null,"url":null,"abstract":"The synchronized phasor measurement unit (PMU), developed in the 1980s, is considered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be useful for dynamic state estimation of the power grid. While PMU measurements currently cover fewer than 1% of the nodes in the U.S. power grid, the power industry has gained the momentum to advance the technology and install more units. However, with limited resources, the installation must be selective. Previous PMU placement research has focused primarily on network topology, with the goal of finding configurations that achieve full network observability with a minimum number of PMUs. Recently we introduced an approach that utilizes stochastic models of the signals and measurements, to characterize the observability and corresponding uncertainty of power system static states (bus voltage magnitudes and phase angles), for any given configuration of PMUs. Here we present a new approach to designing optimal PMU placement according to estimation uncertainties of the dynamic states. We hope the approach can provide planning engineers with a new tool to help in choosing between PMU placement alternatives.","PeriodicalId":267185,"journal":{"name":"2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Optimal PMU placement evaluation for power system dynamic state estimation\",\"authors\":\"Jinghe Zhang, G. Welch, G. Bishop, Zhenyu Huang\",\"doi\":\"10.1109/ISGTEUROPE.2010.5639006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synchronized phasor measurement unit (PMU), developed in the 1980s, is considered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be useful for dynamic state estimation of the power grid. While PMU measurements currently cover fewer than 1% of the nodes in the U.S. power grid, the power industry has gained the momentum to advance the technology and install more units. However, with limited resources, the installation must be selective. Previous PMU placement research has focused primarily on network topology, with the goal of finding configurations that achieve full network observability with a minimum number of PMUs. Recently we introduced an approach that utilizes stochastic models of the signals and measurements, to characterize the observability and corresponding uncertainty of power system static states (bus voltage magnitudes and phase angles), for any given configuration of PMUs. Here we present a new approach to designing optimal PMU placement according to estimation uncertainties of the dynamic states. We hope the approach can provide planning engineers with a new tool to help in choosing between PMU placement alternatives.\",\"PeriodicalId\":267185,\"journal\":{\"name\":\"2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEUROPE.2010.5639006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2010.5639006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

同步相量测量单元(PMU)是20世纪80年代发展起来的,被认为是未来电力系统中最重要的器件之一。PMU技术的最新发展提供了高速、精确同步的传感器数据,这些数据已被发现对电网的动态状态估计有用。虽然PMU测量目前覆盖了美国电网不到1%的节点,但电力行业已经获得了推进该技术并安装更多单元的动力。但是,由于资源有限,安装必须是选择性的。以前的PMU放置研究主要集中在网络拓扑上,目标是找到用最少数量的PMU实现完全网络可观察性的配置。最近,我们介绍了一种方法,该方法利用信号和测量的随机模型来表征电力系统静态状态(母线电压幅度和相位角)的可观测性和相应的不确定性,适用于任何给定的pmu配置。本文提出了一种基于动态状态估计不确定性的PMU最优放置设计方法。我们希望该方法可以为规划工程师提供一种新的工具,帮助他们在PMU放置方案之间进行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal PMU placement evaluation for power system dynamic state estimation
The synchronized phasor measurement unit (PMU), developed in the 1980s, is considered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be useful for dynamic state estimation of the power grid. While PMU measurements currently cover fewer than 1% of the nodes in the U.S. power grid, the power industry has gained the momentum to advance the technology and install more units. However, with limited resources, the installation must be selective. Previous PMU placement research has focused primarily on network topology, with the goal of finding configurations that achieve full network observability with a minimum number of PMUs. Recently we introduced an approach that utilizes stochastic models of the signals and measurements, to characterize the observability and corresponding uncertainty of power system static states (bus voltage magnitudes and phase angles), for any given configuration of PMUs. Here we present a new approach to designing optimal PMU placement according to estimation uncertainties of the dynamic states. We hope the approach can provide planning engineers with a new tool to help in choosing between PMU placement alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信