用于分类的声音的非负分量

Yong-Choon Cho, Seungjin Choi, S. Bang
{"title":"用于分类的声音的非负分量","authors":"Yong-Choon Cho, Seungjin Choi, S. Bang","doi":"10.1109/ISSPIT.2003.1341200","DOIUrl":null,"url":null,"abstract":"Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditory processing and to the task of sound classification. In contrast, parts-based representation is an alternative way of understanding object recognition in brain. In this paper we employ the non-negative matrix factorization (NMF) [D.D. Lee et al., 1999] which learns parts-based representation in the task of sound classification. Methods of feature extraction from spectro-temporal sounds using the NMF in the absence or presence of noise are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.","PeriodicalId":332887,"journal":{"name":"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Non-negative component parts of sound for classification\",\"authors\":\"Yong-Choon Cho, Seungjin Choi, S. Bang\",\"doi\":\"10.1109/ISSPIT.2003.1341200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditory processing and to the task of sound classification. In contrast, parts-based representation is an alternative way of understanding object recognition in brain. In this paper we employ the non-negative matrix factorization (NMF) [D.D. Lee et al., 1999] which learns parts-based representation in the task of sound classification. Methods of feature extraction from spectro-temporal sounds using the NMF in the absence or presence of noise are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.\",\"PeriodicalId\":332887,\"journal\":{\"name\":\"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2003.1341200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2003.1341200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

稀疏编码或独立分量分析(ICA)作为一种整体表征,被成功地应用于阐明早期听觉加工和声音分类任务。相比之下,基于部分的表征是理解大脑中物体识别的另一种方式。本文采用非负矩阵分解(NMF) [dLee et al., 1999]在声音分类任务中学习基于部件的表示。解释了在没有或存在噪声的情况下使用NMF从光谱时间声音中提取特征的方法。实验结果表明,与基于ica的特征相比,基于nmf的特征提高了声音分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-negative component parts of sound for classification
Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditory processing and to the task of sound classification. In contrast, parts-based representation is an alternative way of understanding object recognition in brain. In this paper we employ the non-negative matrix factorization (NMF) [D.D. Lee et al., 1999] which learns parts-based representation in the task of sound classification. Methods of feature extraction from spectro-temporal sounds using the NMF in the absence or presence of noise are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信