E. Saad, M. Awadalla, M. Saleh, H. Keshk, R. Darwish
{"title":"动态传感器网络的自适应高效聚类结构","authors":"E. Saad, M. Awadalla, M. Saleh, H. Keshk, R. Darwish","doi":"10.1080/1206212X.2009.11441952","DOIUrl":null,"url":null,"abstract":"Clustering is an effective topology control approach in sensor networks. This paper proposes a distributed and adaptive clustering architecture for dynamic sensor networks. The proposed architecture comprises an approach for energy-efficient clustering with adaptive node activity for achieving a good performance in terms of system lifetime and network coverage quality. This architecture demonstrates a uniform cluster head distribution across the network in addition to a desirable network coverage. Furthermore, the paper presents an analytical approach to disclose the relationship between network density and coverage quality. Experiments were conducted to validate the proposed architecture. The analytical and simulation results demonstrate that the proposed architecture prolongs network lifetime meanwhile preserving a highly coverage quality.","PeriodicalId":205589,"journal":{"name":"2007 2nd International Workshop on Soft Computing Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Adaptive and Energy Efficient Clustering Architecture for Dynamic Sensor Networks\",\"authors\":\"E. Saad, M. Awadalla, M. Saleh, H. Keshk, R. Darwish\",\"doi\":\"10.1080/1206212X.2009.11441952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is an effective topology control approach in sensor networks. This paper proposes a distributed and adaptive clustering architecture for dynamic sensor networks. The proposed architecture comprises an approach for energy-efficient clustering with adaptive node activity for achieving a good performance in terms of system lifetime and network coverage quality. This architecture demonstrates a uniform cluster head distribution across the network in addition to a desirable network coverage. Furthermore, the paper presents an analytical approach to disclose the relationship between network density and coverage quality. Experiments were conducted to validate the proposed architecture. The analytical and simulation results demonstrate that the proposed architecture prolongs network lifetime meanwhile preserving a highly coverage quality.\",\"PeriodicalId\":205589,\"journal\":{\"name\":\"2007 2nd International Workshop on Soft Computing Applications\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Workshop on Soft Computing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212X.2009.11441952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Workshop on Soft Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2009.11441952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive and Energy Efficient Clustering Architecture for Dynamic Sensor Networks
Clustering is an effective topology control approach in sensor networks. This paper proposes a distributed and adaptive clustering architecture for dynamic sensor networks. The proposed architecture comprises an approach for energy-efficient clustering with adaptive node activity for achieving a good performance in terms of system lifetime and network coverage quality. This architecture demonstrates a uniform cluster head distribution across the network in addition to a desirable network coverage. Furthermore, the paper presents an analytical approach to disclose the relationship between network density and coverage quality. Experiments were conducted to validate the proposed architecture. The analytical and simulation results demonstrate that the proposed architecture prolongs network lifetime meanwhile preserving a highly coverage quality.