{"title":"基于物理引导神经网络的轴承故障诊断混合框架","authors":"L. Krupp, A. Hennig, C. Wiede, A. Grabmaier","doi":"10.1109/ICECS49266.2020.9294902","DOIUrl":null,"url":null,"abstract":"Emerging smart sensor systems are the main driver of innovation in many fields of application. A prominent example is condition-based monitoring and especially its subdomain fault diagnosis. The integration of advanced machine and deep learning-based signal processing into sensor systems enables new intelligent condition monitoring solutions. However, the data-based nature of machine and deep learning methods still impedes their applicability in many cases, due to a severe lack of data. In this paper, we introduce a new hybrid physics- and data-based framework aiming to solve the issue of small datasets for vibration-based fault diagnosis applied to rolling-element bearings. The framework combines a vibration simulation model and a neural network with embedded physics-based knowledge into a physics-guided neural network. Our approach aims to generate physically consistent data for the training of fault classifiers without extensive data acquisition.","PeriodicalId":404022,"journal":{"name":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Framework for Bearing Fault Diagnosis using Physics-guided Neural Networks\",\"authors\":\"L. Krupp, A. Hennig, C. Wiede, A. Grabmaier\",\"doi\":\"10.1109/ICECS49266.2020.9294902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging smart sensor systems are the main driver of innovation in many fields of application. A prominent example is condition-based monitoring and especially its subdomain fault diagnosis. The integration of advanced machine and deep learning-based signal processing into sensor systems enables new intelligent condition monitoring solutions. However, the data-based nature of machine and deep learning methods still impedes their applicability in many cases, due to a severe lack of data. In this paper, we introduce a new hybrid physics- and data-based framework aiming to solve the issue of small datasets for vibration-based fault diagnosis applied to rolling-element bearings. The framework combines a vibration simulation model and a neural network with embedded physics-based knowledge into a physics-guided neural network. Our approach aims to generate physically consistent data for the training of fault classifiers without extensive data acquisition.\",\"PeriodicalId\":404022,\"journal\":{\"name\":\"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS49266.2020.9294902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS49266.2020.9294902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Framework for Bearing Fault Diagnosis using Physics-guided Neural Networks
Emerging smart sensor systems are the main driver of innovation in many fields of application. A prominent example is condition-based monitoring and especially its subdomain fault diagnosis. The integration of advanced machine and deep learning-based signal processing into sensor systems enables new intelligent condition monitoring solutions. However, the data-based nature of machine and deep learning methods still impedes their applicability in many cases, due to a severe lack of data. In this paper, we introduce a new hybrid physics- and data-based framework aiming to solve the issue of small datasets for vibration-based fault diagnosis applied to rolling-element bearings. The framework combines a vibration simulation model and a neural network with embedded physics-based knowledge into a physics-guided neural network. Our approach aims to generate physically consistent data for the training of fault classifiers without extensive data acquisition.