基于局部自适应方差的点向形状自适应DCT域信号相关噪声去除

A. Foi, V. Katkovnik, K. Egiazarian
{"title":"基于局部自适应方差的点向形状自适应DCT域信号相关噪声去除","authors":"A. Foi, V. Katkovnik, K. Egiazarian","doi":"10.5281/ZENODO.40647","DOIUrl":null,"url":null,"abstract":"This paper presents a novel effective method for denoising of images corrupted by signal-dependent noise. Denoising is performed by coefficient shrinkage in the shape-adaptive DCT (SA-DCT) transform-domain. The Anisotropic Local Polynomial Approximation (LPA) - Intersection of Confidence Intervals (ICI) technique is used to define the shape of the transform's support in a pointwise adaptive manner. The use of such an adaptive transform support enables both a simpler modelling of the noise in the transform domain and a sparser decomposition of the signal. Consequently, coefficient shrinkage is very effective and the reconstructed estimate's quality is high, in terms of both numerical error-criteria and visual appearance, with sharp detail preservation and clean edges. Simulation experiments demonstrate the superior performance of the proposed algorithm for a wide class of noise models with a signal-dependent variance, including Poissonian (photon-limited imaging), film-grain, and speckle noise.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Signal-dependent noise removal in pointwise shape-adaptive DCT domain with locally adaptive variance\",\"authors\":\"A. Foi, V. Katkovnik, K. Egiazarian\",\"doi\":\"10.5281/ZENODO.40647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel effective method for denoising of images corrupted by signal-dependent noise. Denoising is performed by coefficient shrinkage in the shape-adaptive DCT (SA-DCT) transform-domain. The Anisotropic Local Polynomial Approximation (LPA) - Intersection of Confidence Intervals (ICI) technique is used to define the shape of the transform's support in a pointwise adaptive manner. The use of such an adaptive transform support enables both a simpler modelling of the noise in the transform domain and a sparser decomposition of the signal. Consequently, coefficient shrinkage is very effective and the reconstructed estimate's quality is high, in terms of both numerical error-criteria and visual appearance, with sharp detail preservation and clean edges. Simulation experiments demonstrate the superior performance of the proposed algorithm for a wide class of noise models with a signal-dependent variance, including Poissonian (photon-limited imaging), film-grain, and speckle noise.\",\"PeriodicalId\":176384,\"journal\":{\"name\":\"2007 15th European Signal Processing Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 15th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.40647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种新的有效的去噪方法来去除受信号相关噪声干扰的图像。在形状自适应DCT (SA-DCT)变换域中通过系数收缩进行去噪。利用各向异性局部多项式近似(LPA) -置信区间交集(ICI)技术以点向自适应的方式定义变换支持的形状。使用这种自适应变换支持既可以在变换域中更简单地建模噪声,又可以对信号进行更稀疏的分解。因此,系数收缩是非常有效的,重建估计的质量很高,在数值误差标准和视觉外观方面,具有清晰的细节保留和干净的边缘。仿真实验证明了该算法在具有信号依赖方差的各种噪声模型(包括泊松噪声(光子受限成像)、膜粒噪声和散斑噪声)中的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal-dependent noise removal in pointwise shape-adaptive DCT domain with locally adaptive variance
This paper presents a novel effective method for denoising of images corrupted by signal-dependent noise. Denoising is performed by coefficient shrinkage in the shape-adaptive DCT (SA-DCT) transform-domain. The Anisotropic Local Polynomial Approximation (LPA) - Intersection of Confidence Intervals (ICI) technique is used to define the shape of the transform's support in a pointwise adaptive manner. The use of such an adaptive transform support enables both a simpler modelling of the noise in the transform domain and a sparser decomposition of the signal. Consequently, coefficient shrinkage is very effective and the reconstructed estimate's quality is high, in terms of both numerical error-criteria and visual appearance, with sharp detail preservation and clean edges. Simulation experiments demonstrate the superior performance of the proposed algorithm for a wide class of noise models with a signal-dependent variance, including Poissonian (photon-limited imaging), film-grain, and speckle noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信