基于特征参数有效组合的电除颤效果预测系统

Yuta Yoshikawa, Takayuki Okai, H. Oya, Y. Hoshi, K. Nakano
{"title":"基于特征参数有效组合的电除颤效果预测系统","authors":"Yuta Yoshikawa, Takayuki Okai, H. Oya, Y. Hoshi, K. Nakano","doi":"10.1109/ICCAIS56082.2022.9990403","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a prediction system of the effect of electrical defibrillation for shockable arrhythmias. In order to develop the proposed prediction system, ECGs are firstly analyzed by Gabor wavelet transform, Poincare plot and spectral entropy, and feature parameters are extracted by these analysis results. Moreover, the imbalanced data are corrected by using SMOTE (Synthetic Minority Over-sampling TEchnique), and we adopt Pearson’s χ2 test so as to evaluate the efficient feature parameters. Finally, by using selected feature parameters, support vector machines (SVM) based on three kernels (Linear, Gaussian, and Polynomial) are constructed, and the effectiveness of the prediction system is presented.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prediction System for the Effect of Electrical Defibrillation Based on Efficient Combinations for Feature Parameters\",\"authors\":\"Yuta Yoshikawa, Takayuki Okai, H. Oya, Y. Hoshi, K. Nakano\",\"doi\":\"10.1109/ICCAIS56082.2022.9990403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a prediction system of the effect of electrical defibrillation for shockable arrhythmias. In order to develop the proposed prediction system, ECGs are firstly analyzed by Gabor wavelet transform, Poincare plot and spectral entropy, and feature parameters are extracted by these analysis results. Moreover, the imbalanced data are corrected by using SMOTE (Synthetic Minority Over-sampling TEchnique), and we adopt Pearson’s χ2 test so as to evaluate the efficient feature parameters. Finally, by using selected feature parameters, support vector machines (SVM) based on three kernels (Linear, Gaussian, and Polynomial) are constructed, and the effectiveness of the prediction system is presented.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种电除颤治疗突发性心律失常效果的预测系统。为了开发该预测系统,首先对脑电图进行Gabor小波变换、庞加莱图和谱熵分析,并根据分析结果提取特征参数。采用SMOTE (Synthetic Minority oversampling TEchnique)对不平衡数据进行校正,并采用Pearson’s χ2检验对有效特征参数进行评价。最后,通过选取特征参数,构造了基于三种核(线性、高斯和多项式)的支持向量机(SVM),并验证了预测系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Prediction System for the Effect of Electrical Defibrillation Based on Efficient Combinations for Feature Parameters
In this paper, we propose a prediction system of the effect of electrical defibrillation for shockable arrhythmias. In order to develop the proposed prediction system, ECGs are firstly analyzed by Gabor wavelet transform, Poincare plot and spectral entropy, and feature parameters are extracted by these analysis results. Moreover, the imbalanced data are corrected by using SMOTE (Synthetic Minority Over-sampling TEchnique), and we adopt Pearson’s χ2 test so as to evaluate the efficient feature parameters. Finally, by using selected feature parameters, support vector machines (SVM) based on three kernels (Linear, Gaussian, and Polynomial) are constructed, and the effectiveness of the prediction system is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信