{"title":"基于仿真的动态排队系统预测分析","authors":"Huiyin Ouyang, B. Nelson","doi":"10.1109/WSC.2017.8247910","DOIUrl":null,"url":null,"abstract":"Simulation and simulation optimization have primarily been used for static system design problems based on long-run average performance measures. Control or policy-based optimization has been a weakness, because it requires a way to predict future behavior based on current state and time information. This work is a first step in that direction with a focus on congestion measures for queueing systems. The idea is to fit predictive models to dynamic sample paths of the system state from a detailed simulation. We propose a two-step method to dynamically predict the probability that the system state belongs to a certain subset and test the performance of this method on two examples.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simulation-based predictive analytics for dynamic queueing systems\",\"authors\":\"Huiyin Ouyang, B. Nelson\",\"doi\":\"10.1109/WSC.2017.8247910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation and simulation optimization have primarily been used for static system design problems based on long-run average performance measures. Control or policy-based optimization has been a weakness, because it requires a way to predict future behavior based on current state and time information. This work is a first step in that direction with a focus on congestion measures for queueing systems. The idea is to fit predictive models to dynamic sample paths of the system state from a detailed simulation. We propose a two-step method to dynamically predict the probability that the system state belongs to a certain subset and test the performance of this method on two examples.\",\"PeriodicalId\":145780,\"journal\":{\"name\":\"2017 Winter Simulation Conference (WSC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2017.8247910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation-based predictive analytics for dynamic queueing systems
Simulation and simulation optimization have primarily been used for static system design problems based on long-run average performance measures. Control or policy-based optimization has been a weakness, because it requires a way to predict future behavior based on current state and time information. This work is a first step in that direction with a focus on congestion measures for queueing systems. The idea is to fit predictive models to dynamic sample paths of the system state from a detailed simulation. We propose a two-step method to dynamically predict the probability that the system state belongs to a certain subset and test the performance of this method on two examples.