低功耗PCB磁通门传感器

J. Kubík, L. Pavel, P. Ripka, P. Kašpar
{"title":"低功耗PCB磁通门传感器","authors":"J. Kubík, L. Pavel, P. Ripka, P. Kašpar","doi":"10.1109/ICSENS.2005.1597728","DOIUrl":null,"url":null,"abstract":"New PCB (printed circuit board) technology flat fluxgate sensor with integrated coils and amorphous alloy core was developed and its excitation parameters were optimized for low-power consumption. The power consumption achieved with 10 kHz, 300 mA p-p pulse excitation with duty cycle 12.5% was only 3.9 mW, which is 3-times lower than that for sinewave flux density excitation. The sensor sensitivity reached 94 V/T. The required bridge supply voltage was only 0.47 V. The low-cost, low-power sensor has a temperature offset stability of 120 nT in the -20...+70 degC temperature range and 0.17%/degC open-loop sensitivity tempco due to the use of new core embedding technique. The perming error due to 10 mT field shock was suppressed below 1.2 muT","PeriodicalId":119985,"journal":{"name":"IEEE Sensors, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Low-power PCB fluxgate sensor\",\"authors\":\"J. Kubík, L. Pavel, P. Ripka, P. Kašpar\",\"doi\":\"10.1109/ICSENS.2005.1597728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New PCB (printed circuit board) technology flat fluxgate sensor with integrated coils and amorphous alloy core was developed and its excitation parameters were optimized for low-power consumption. The power consumption achieved with 10 kHz, 300 mA p-p pulse excitation with duty cycle 12.5% was only 3.9 mW, which is 3-times lower than that for sinewave flux density excitation. The sensor sensitivity reached 94 V/T. The required bridge supply voltage was only 0.47 V. The low-cost, low-power sensor has a temperature offset stability of 120 nT in the -20...+70 degC temperature range and 0.17%/degC open-loop sensitivity tempco due to the use of new core embedding technique. The perming error due to 10 mT field shock was suppressed below 1.2 muT\",\"PeriodicalId\":119985,\"journal\":{\"name\":\"IEEE Sensors, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2005.1597728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2005.1597728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

研制了集成线圈和非晶合金芯的新型PCB(印刷电路板)技术平板磁通门传感器,并对其励磁参数进行了低功耗优化。采用占空比12.5%、10khz、300ma p-p脉冲激励时的功耗仅为3.9 mW,比采用正弦波磁通密度激励时的功耗低3倍。传感器灵敏度达到94 V/T。所需的桥电源电压仅为0.47 V。这种低成本、低功耗的传感器在-20℃温度下的温度偏移稳定性为120nt。+70℃的温度范围和0.17%/℃的开环灵敏度,由于采用了新的芯埋技术。由10mt场冲击引起的穿孔误差被抑制在1.2 muT以下
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-power PCB fluxgate sensor
New PCB (printed circuit board) technology flat fluxgate sensor with integrated coils and amorphous alloy core was developed and its excitation parameters were optimized for low-power consumption. The power consumption achieved with 10 kHz, 300 mA p-p pulse excitation with duty cycle 12.5% was only 3.9 mW, which is 3-times lower than that for sinewave flux density excitation. The sensor sensitivity reached 94 V/T. The required bridge supply voltage was only 0.47 V. The low-cost, low-power sensor has a temperature offset stability of 120 nT in the -20...+70 degC temperature range and 0.17%/degC open-loop sensitivity tempco due to the use of new core embedding technique. The perming error due to 10 mT field shock was suppressed below 1.2 muT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信