人工智能招聘系统中的性别偏见:基于社会学和数据科学的案例研究

Sheilla Njoto, M. Cheong, Reeva M. Lederman, A. McLoughney, L. Ruppanner, Anthony Wirth
{"title":"人工智能招聘系统中的性别偏见:基于社会学和数据科学的案例研究","authors":"Sheilla Njoto, M. Cheong, Reeva M. Lederman, A. McLoughney, L. Ruppanner, Anthony Wirth","doi":"10.1109/ISTAS55053.2022.10227106","DOIUrl":null,"url":null,"abstract":"This paper explores the extent to which gender bias is introduced in the deployment of automation for hiring practices. We use an interdisciplinary methodology to test our hypotheses: observing a human-led recruitment panel and building an explainable algorithmic prototype from the ground up, to quantify gender bias. The key findings of this study are threefold: identifying potential sources of human bias from a recruitment panel’s ranking of CVs; identifying sources of bias from a potential algorithmic pipeline which simulates human decision making; and recommending ways to mitigate bias from both aspects. Our research has provided an innovative research design that combines social science and data science to theorise how automation may introduce bias in hiring practices, and also pinpoint where it is introduced. It also furthers the current scholarship on gender bias in hiring practices by providing key empirical inferences on the factors contributing to bias.","PeriodicalId":180420,"journal":{"name":"2022 IEEE International Symposium on Technology and Society (ISTAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gender Bias in AI Recruitment Systems: A Sociological-and Data Science-based Case Study\",\"authors\":\"Sheilla Njoto, M. Cheong, Reeva M. Lederman, A. McLoughney, L. Ruppanner, Anthony Wirth\",\"doi\":\"10.1109/ISTAS55053.2022.10227106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the extent to which gender bias is introduced in the deployment of automation for hiring practices. We use an interdisciplinary methodology to test our hypotheses: observing a human-led recruitment panel and building an explainable algorithmic prototype from the ground up, to quantify gender bias. The key findings of this study are threefold: identifying potential sources of human bias from a recruitment panel’s ranking of CVs; identifying sources of bias from a potential algorithmic pipeline which simulates human decision making; and recommending ways to mitigate bias from both aspects. Our research has provided an innovative research design that combines social science and data science to theorise how automation may introduce bias in hiring practices, and also pinpoint where it is introduced. It also furthers the current scholarship on gender bias in hiring practices by providing key empirical inferences on the factors contributing to bias.\",\"PeriodicalId\":180420,\"journal\":{\"name\":\"2022 IEEE International Symposium on Technology and Society (ISTAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Technology and Society (ISTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTAS55053.2022.10227106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Technology and Society (ISTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTAS55053.2022.10227106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了在招聘实践自动化部署中引入性别偏见的程度。我们使用跨学科的方法来检验我们的假设:观察一个由人类主导的招聘小组,从头开始构建一个可解释的算法原型,以量化性别偏见。这项研究的主要发现有三个方面:从招聘小组的简历排名中找出潜在的人为偏见来源;从模拟人类决策的潜在算法管道中识别偏见的来源;并从这两个方面提出减轻偏见的方法。我们的研究提供了一种创新的研究设计,将社会科学和数据科学结合起来,理论化自动化是如何在招聘实践中引入偏见的,并指出它是在哪里引入的。它还通过对造成偏见的因素提供关键的经验推断,进一步推动了目前关于招聘实践中性别偏见的学术研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender Bias in AI Recruitment Systems: A Sociological-and Data Science-based Case Study
This paper explores the extent to which gender bias is introduced in the deployment of automation for hiring practices. We use an interdisciplinary methodology to test our hypotheses: observing a human-led recruitment panel and building an explainable algorithmic prototype from the ground up, to quantify gender bias. The key findings of this study are threefold: identifying potential sources of human bias from a recruitment panel’s ranking of CVs; identifying sources of bias from a potential algorithmic pipeline which simulates human decision making; and recommending ways to mitigate bias from both aspects. Our research has provided an innovative research design that combines social science and data science to theorise how automation may introduce bias in hiring practices, and also pinpoint where it is introduced. It also furthers the current scholarship on gender bias in hiring practices by providing key empirical inferences on the factors contributing to bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信