I. Angulo, J. García-Zubía, L. Rodríguez-Gil, P. Orduña
{"title":"一种基于嵌入式技术进行远程实验的新方法","authors":"I. Angulo, J. García-Zubía, L. Rodríguez-Gil, P. Orduña","doi":"10.1109/REV.2016.7444445","DOIUrl":null,"url":null,"abstract":"Present paper presents a new approach to the deployment of remote laboratories over embedded technologies. New proposed architecture allows to perform the main stages in the experimentation with embedded systems including compilation and debugging. The design of the architecture provides scalability and replicability over different technologies. A new remote laboratory has been deployed to test the architecture providing remote experimentation over an ARM Cortex M0+ MCU.","PeriodicalId":251236,"journal":{"name":"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A new approach to conduct remote experimentation over embedded technologies\",\"authors\":\"I. Angulo, J. García-Zubía, L. Rodríguez-Gil, P. Orduña\",\"doi\":\"10.1109/REV.2016.7444445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present paper presents a new approach to the deployment of remote laboratories over embedded technologies. New proposed architecture allows to perform the main stages in the experimentation with embedded systems including compilation and debugging. The design of the architecture provides scalability and replicability over different technologies. A new remote laboratory has been deployed to test the architecture providing remote experimentation over an ARM Cortex M0+ MCU.\",\"PeriodicalId\":251236,\"journal\":{\"name\":\"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REV.2016.7444445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REV.2016.7444445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new approach to conduct remote experimentation over embedded technologies
Present paper presents a new approach to the deployment of remote laboratories over embedded technologies. New proposed architecture allows to perform the main stages in the experimentation with embedded systems including compilation and debugging. The design of the architecture provides scalability and replicability over different technologies. A new remote laboratory has been deployed to test the architecture providing remote experimentation over an ARM Cortex M0+ MCU.