CMOS设计面临功率墙的挑战

T. Kuroda
{"title":"CMOS设计面临功率墙的挑战","authors":"T. Kuroda","doi":"10.1109/IMNC.2001.984030","DOIUrl":null,"url":null,"abstract":"CMOS power dissipation has been increasing due to the increase in power density. The power dissipation increased fourfold every three years until the early 1990's, due to a constant voltage scaling. Recently, a constant field scaling has been applied to reduce power dissipation, where the power density is increased proportional to the 0.7th power of scaling factor, resulting in power increase by twice every 6.5 years. It is considered that the power dissipation of CMOS chips will steadily be increased as a natural result of device scaling. Technology scaling will become difficult due to the power wall. On the other hand, future computer and communications technology will require further reduction in power dissipation. Since no new energy efficient device technology is on the horizon, low power CMOS design should be challenged. This paper discusses what and how much designers can do for CMOS power reduction.","PeriodicalId":202620,"journal":{"name":"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"CMOS design challenges to power wall\",\"authors\":\"T. Kuroda\",\"doi\":\"10.1109/IMNC.2001.984030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CMOS power dissipation has been increasing due to the increase in power density. The power dissipation increased fourfold every three years until the early 1990's, due to a constant voltage scaling. Recently, a constant field scaling has been applied to reduce power dissipation, where the power density is increased proportional to the 0.7th power of scaling factor, resulting in power increase by twice every 6.5 years. It is considered that the power dissipation of CMOS chips will steadily be increased as a natural result of device scaling. Technology scaling will become difficult due to the power wall. On the other hand, future computer and communications technology will require further reduction in power dissipation. Since no new energy efficient device technology is on the horizon, low power CMOS design should be challenged. This paper discusses what and how much designers can do for CMOS power reduction.\",\"PeriodicalId\":202620,\"journal\":{\"name\":\"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMNC.2001.984030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMNC.2001.984030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

由于功率密度的增加,CMOS的功耗一直在增加。直到20世纪90年代初,由于恒定的电压缩放,功耗每三年增加四倍。最近,为了降低功耗,采用了恒定的场缩放,其中功率密度与缩放因子的0.7次方成比例增加,每6.5年功率增加两倍。认为CMOS芯片的功耗会随着器件规模的扩大而不断增加。由于功率墙的存在,技术扩展将变得困难。另一方面,未来的计算机和通信技术将要求进一步降低功耗。由于没有新的节能器件技术,低功耗CMOS设计应该受到挑战。本文讨论了设计人员可以为CMOS功耗降低做些什么和做多少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMOS design challenges to power wall
CMOS power dissipation has been increasing due to the increase in power density. The power dissipation increased fourfold every three years until the early 1990's, due to a constant voltage scaling. Recently, a constant field scaling has been applied to reduce power dissipation, where the power density is increased proportional to the 0.7th power of scaling factor, resulting in power increase by twice every 6.5 years. It is considered that the power dissipation of CMOS chips will steadily be increased as a natural result of device scaling. Technology scaling will become difficult due to the power wall. On the other hand, future computer and communications technology will require further reduction in power dissipation. Since no new energy efficient device technology is on the horizon, low power CMOS design should be challenged. This paper discusses what and how much designers can do for CMOS power reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信