学习用特征袋和稀疏学习方法识别眼底图像中的病理性近视

Yanwu Xu, Jiang Liu, Zhuo Zhang, N. Tan, D. Wong, S. Saw, T. Wong
{"title":"学习用特征袋和稀疏学习方法识别眼底图像中的病理性近视","authors":"Yanwu Xu, Jiang Liu, Zhuo Zhang, N. Tan, D. Wong, S. Saw, T. Wong","doi":"10.1109/ISBI.2013.6556618","DOIUrl":null,"url":null,"abstract":"Pathological myopia is a leading cause of visual impairment, and can lead to blindness in children if left undetected. We present a bag-of-feature and sparse learning based framework to automatically recognize pathological myopia in retinal fundus images and discover the most related visual features corresponding to the retinal changes in pathological myopia. In the learning phase, the codebook for the bag-of-feature model and the classification model are first learnt, and the top related visual features are discovered via sparse learning concurrently. In the testing phase, for a given retinal fundus image, local features are first extracted and then quantized with the learned codebook to obtain the global feature. Finally, the classification model is used to determine the presence of pathological myopia. Our results on a population based study dataset of 2258 images achieve a 0.964 ± 0.007 AUC value and 90.6±1.0% balanced accuracy at a 85.0% specificity. The results are promising for further development and validation of this framework.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Learn to recognize pathological myopia in fundus images using bag-of-feature and sparse learning approach\",\"authors\":\"Yanwu Xu, Jiang Liu, Zhuo Zhang, N. Tan, D. Wong, S. Saw, T. Wong\",\"doi\":\"10.1109/ISBI.2013.6556618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathological myopia is a leading cause of visual impairment, and can lead to blindness in children if left undetected. We present a bag-of-feature and sparse learning based framework to automatically recognize pathological myopia in retinal fundus images and discover the most related visual features corresponding to the retinal changes in pathological myopia. In the learning phase, the codebook for the bag-of-feature model and the classification model are first learnt, and the top related visual features are discovered via sparse learning concurrently. In the testing phase, for a given retinal fundus image, local features are first extracted and then quantized with the learned codebook to obtain the global feature. Finally, the classification model is used to determine the presence of pathological myopia. Our results on a population based study dataset of 2258 images achieve a 0.964 ± 0.007 AUC value and 90.6±1.0% balanced accuracy at a 85.0% specificity. The results are promising for further development and validation of this framework.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

病理性近视是视力受损的主要原因,如果不及时发现,可能导致儿童失明。我们提出了一种基于特征袋和稀疏学习的框架来自动识别视网膜眼底图像中的病理性近视,并发现与病理性近视视网膜变化最相关的视觉特征。在学习阶段,首先学习特征袋模型和分类模型的码本,并通过稀疏学习并发发现最上面相关的视觉特征。在测试阶段,对于给定的视网膜眼底图像,首先提取局部特征,然后使用学习到的码本进行量化,得到全局特征。最后,利用分类模型判断是否存在病理性近视。在2258张图像的总体研究数据集上,我们的结果达到了0.964±0.007 AUC值和90.6±1.0%的平衡精度,特异性为85.0%。结果为进一步开发和验证该框架提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learn to recognize pathological myopia in fundus images using bag-of-feature and sparse learning approach
Pathological myopia is a leading cause of visual impairment, and can lead to blindness in children if left undetected. We present a bag-of-feature and sparse learning based framework to automatically recognize pathological myopia in retinal fundus images and discover the most related visual features corresponding to the retinal changes in pathological myopia. In the learning phase, the codebook for the bag-of-feature model and the classification model are first learnt, and the top related visual features are discovered via sparse learning concurrently. In the testing phase, for a given retinal fundus image, local features are first extracted and then quantized with the learned codebook to obtain the global feature. Finally, the classification model is used to determine the presence of pathological myopia. Our results on a population based study dataset of 2258 images achieve a 0.964 ± 0.007 AUC value and 90.6±1.0% balanced accuracy at a 85.0% specificity. The results are promising for further development and validation of this framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信