{"title":"IEEE 802.15.4/ZigBee和6LoWPAN在低功耗工业无线传感器网络中的实际应用对比评估","authors":"E. Toscano, L. L. Bello","doi":"10.1109/WFCS.2012.6242553","DOIUrl":null,"url":null,"abstract":"This paper addresses the low-power mechanisms provided by the IEEE 802.15.4/ZigBee and 6LoWPAN protocols, providing comparative assessments through experimental measurements performed on a real testbed. For a fair performance comparison, a special effort has been made to both tune the parameters of each protocol so as to make it able to properly operate in low-power mode and make the measurement scenarios equivalent in terms of traffic and energy efficiency. After addressing this tuning phase, the paper compares the protocols performance obtained on the same network, under the same workload and while working with the same duty cycle. The comparison focuses on the impact of the low-power mechanisms on the network performance. The experimental assessments highlight the strengths and weaknesses of both protocols when working in low-power mode.","PeriodicalId":110610,"journal":{"name":"2012 9th IEEE International Workshop on Factory Communication Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Comparative assessments of IEEE 802.15.4/ZigBee and 6LoWPAN for low-power industrial WSNs in realistic scenarios\",\"authors\":\"E. Toscano, L. L. Bello\",\"doi\":\"10.1109/WFCS.2012.6242553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the low-power mechanisms provided by the IEEE 802.15.4/ZigBee and 6LoWPAN protocols, providing comparative assessments through experimental measurements performed on a real testbed. For a fair performance comparison, a special effort has been made to both tune the parameters of each protocol so as to make it able to properly operate in low-power mode and make the measurement scenarios equivalent in terms of traffic and energy efficiency. After addressing this tuning phase, the paper compares the protocols performance obtained on the same network, under the same workload and while working with the same duty cycle. The comparison focuses on the impact of the low-power mechanisms on the network performance. The experimental assessments highlight the strengths and weaknesses of both protocols when working in low-power mode.\",\"PeriodicalId\":110610,\"journal\":{\"name\":\"2012 9th IEEE International Workshop on Factory Communication Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th IEEE International Workshop on Factory Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFCS.2012.6242553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th IEEE International Workshop on Factory Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2012.6242553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative assessments of IEEE 802.15.4/ZigBee and 6LoWPAN for low-power industrial WSNs in realistic scenarios
This paper addresses the low-power mechanisms provided by the IEEE 802.15.4/ZigBee and 6LoWPAN protocols, providing comparative assessments through experimental measurements performed on a real testbed. For a fair performance comparison, a special effort has been made to both tune the parameters of each protocol so as to make it able to properly operate in low-power mode and make the measurement scenarios equivalent in terms of traffic and energy efficiency. After addressing this tuning phase, the paper compares the protocols performance obtained on the same network, under the same workload and while working with the same duty cycle. The comparison focuses on the impact of the low-power mechanisms on the network performance. The experimental assessments highlight the strengths and weaknesses of both protocols when working in low-power mode.