基于强化学习算法的多自由度水下机器人运动获取

Yongfeng Han, H. Kimura
{"title":"基于强化学习算法的多自由度水下机器人运动获取","authors":"Yongfeng Han, H. Kimura","doi":"10.1109/TENCON.2010.5686136","DOIUrl":null,"url":null,"abstract":"This paper deals with motions obtaining of an underwater robot arm which have multi-degree of freedom by using reinforcement learning algorithms. A natural gradient Actor-Critic algorithm which uses Eligibility Traces is applied to the robot arm. In this algorithm, motion planning problems are modeled as finite state Markov decision processes. The robot arm is developed to have 4 joints, each joint consists 1 servo motor. The experiment results show the robot arm successfully learning to swim by feasible learning steps.","PeriodicalId":101683,"journal":{"name":"TENCON 2010 - 2010 IEEE Region 10 Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motions obtaining of multi-degree-freedom underwater robot by using reinforcement learning algorithms\",\"authors\":\"Yongfeng Han, H. Kimura\",\"doi\":\"10.1109/TENCON.2010.5686136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with motions obtaining of an underwater robot arm which have multi-degree of freedom by using reinforcement learning algorithms. A natural gradient Actor-Critic algorithm which uses Eligibility Traces is applied to the robot arm. In this algorithm, motion planning problems are modeled as finite state Markov decision processes. The robot arm is developed to have 4 joints, each joint consists 1 servo motor. The experiment results show the robot arm successfully learning to swim by feasible learning steps.\",\"PeriodicalId\":101683,\"journal\":{\"name\":\"TENCON 2010 - 2010 IEEE Region 10 Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2010 - 2010 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2010.5686136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2010 - 2010 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2010.5686136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文用强化学习算法研究了多自由度水下机械臂的运动获取问题。将一种自然梯度Actor-Critic算法应用于机械臂。该算法将运动规划问题建模为有限状态马尔可夫决策过程。机器人手臂被设计成有4个关节,每个关节由1个伺服电机组成。实验结果表明,该机器人手臂通过可行的学习步骤成功地学会了游泳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motions obtaining of multi-degree-freedom underwater robot by using reinforcement learning algorithms
This paper deals with motions obtaining of an underwater robot arm which have multi-degree of freedom by using reinforcement learning algorithms. A natural gradient Actor-Critic algorithm which uses Eligibility Traces is applied to the robot arm. In this algorithm, motion planning problems are modeled as finite state Markov decision processes. The robot arm is developed to have 4 joints, each joint consists 1 servo motor. The experiment results show the robot arm successfully learning to swim by feasible learning steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信