一类周期离散事件过程估计与跟踪的鲁棒卡尔曼滤波

S. D. Elton, B. J. Slocumb
{"title":"一类周期离散事件过程估计与跟踪的鲁棒卡尔曼滤波","authors":"S. D. Elton, B. J. Slocumb","doi":"10.1109/ISSPA.1996.615708","DOIUrl":null,"url":null,"abstract":"This paper discusses a Kalman filter approach to parameter estimation and tracking for a class of discrete event processes. The proposed estimation techniques operate on the recorded event arrival time sequence of a pulse train signal with pulse occurrence times corrupted by timing noise. In adopting a state space approach to signal modelling, a number of real-world conditions are considered and this leads to the formulation of a ICalman filter estimator that is robust to missing and false data, and to signal model mismatch.","PeriodicalId":359344,"journal":{"name":"Fourth International Symposium on Signal Processing and Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Robust Kalman Filter for Estimatioh and Tracking of a Class of Periodic Discrete Event Processes\",\"authors\":\"S. D. Elton, B. J. Slocumb\",\"doi\":\"10.1109/ISSPA.1996.615708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a Kalman filter approach to parameter estimation and tracking for a class of discrete event processes. The proposed estimation techniques operate on the recorded event arrival time sequence of a pulse train signal with pulse occurrence times corrupted by timing noise. In adopting a state space approach to signal modelling, a number of real-world conditions are considered and this leads to the formulation of a ICalman filter estimator that is robust to missing and false data, and to signal model mismatch.\",\"PeriodicalId\":359344,\"journal\":{\"name\":\"Fourth International Symposium on Signal Processing and Its Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Symposium on Signal Processing and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.1996.615708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Signal Processing and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1996.615708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了一类离散事件过程参数估计与跟踪的卡尔曼滤波方法。所提出的估计技术对脉冲序列信号的记录的事件到达时间序列进行操作,其中脉冲发生时间受到时序噪声的干扰。在采用状态空间方法进行信号建模时,考虑了许多现实世界的条件,这导致了对缺失和错误数据以及信号模型不匹配具有鲁棒性的ICalman滤波器估计器的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Kalman Filter for Estimatioh and Tracking of a Class of Periodic Discrete Event Processes
This paper discusses a Kalman filter approach to parameter estimation and tracking for a class of discrete event processes. The proposed estimation techniques operate on the recorded event arrival time sequence of a pulse train signal with pulse occurrence times corrupted by timing noise. In adopting a state space approach to signal modelling, a number of real-world conditions are considered and this leads to the formulation of a ICalman filter estimator that is robust to missing and false data, and to signal model mismatch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信