{"title":"通过时序对齐增强型 CCA 提高短响应时间 SSVEP BCI 的性能","authors":"Aung Aung Phyo Wai, Min-Ho Lee, Seong-Whan Lee, Cuntai Guan","doi":"10.1109/NER.2019.8716985","DOIUrl":null,"url":null,"abstract":"Steady State Visual Evoked Potentials (SSVEP) based Brain Computer Interface (BCI) provides high throughput in communication. In SSVEP-BCI, typically, higher accuracy can be achieved with a relatively longer response time. It is therefore a research topic to reduce the response time while keeping high accuracy. We propose a new method, temporal alignments enhanced Canonical Correlation Analysis (TACCA), followed by a decision fusion to improve classification accuracy with short response time. TACCA exploits linear correlation with non-linear similarity between steady-state responses and stimulus frequencies. We compare TACCA and three state-of-the-art methods using data from 54-subjects with response time ranging from 0.5 to 4 seconds. The evaluation results show that TACCA yields mean significant accuracy increase of 10-30% in all segment lengths, especially for the shorter time segment. One-way ANOVA tests show high significant differences between single and multiple phases in TACCA performance.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improving the Performance of SSVEP BCI with Short Response Time by Temporal Alignments Enhanced CCA\",\"authors\":\"Aung Aung Phyo Wai, Min-Ho Lee, Seong-Whan Lee, Cuntai Guan\",\"doi\":\"10.1109/NER.2019.8716985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steady State Visual Evoked Potentials (SSVEP) based Brain Computer Interface (BCI) provides high throughput in communication. In SSVEP-BCI, typically, higher accuracy can be achieved with a relatively longer response time. It is therefore a research topic to reduce the response time while keeping high accuracy. We propose a new method, temporal alignments enhanced Canonical Correlation Analysis (TACCA), followed by a decision fusion to improve classification accuracy with short response time. TACCA exploits linear correlation with non-linear similarity between steady-state responses and stimulus frequencies. We compare TACCA and three state-of-the-art methods using data from 54-subjects with response time ranging from 0.5 to 4 seconds. The evaluation results show that TACCA yields mean significant accuracy increase of 10-30% in all segment lengths, especially for the shorter time segment. One-way ANOVA tests show high significant differences between single and multiple phases in TACCA performance.\",\"PeriodicalId\":356177,\"journal\":{\"name\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2019.8716985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8716985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Performance of SSVEP BCI with Short Response Time by Temporal Alignments Enhanced CCA
Steady State Visual Evoked Potentials (SSVEP) based Brain Computer Interface (BCI) provides high throughput in communication. In SSVEP-BCI, typically, higher accuracy can be achieved with a relatively longer response time. It is therefore a research topic to reduce the response time while keeping high accuracy. We propose a new method, temporal alignments enhanced Canonical Correlation Analysis (TACCA), followed by a decision fusion to improve classification accuracy with short response time. TACCA exploits linear correlation with non-linear similarity between steady-state responses and stimulus frequencies. We compare TACCA and three state-of-the-art methods using data from 54-subjects with response time ranging from 0.5 to 4 seconds. The evaluation results show that TACCA yields mean significant accuracy increase of 10-30% in all segment lengths, especially for the shorter time segment. One-way ANOVA tests show high significant differences between single and multiple phases in TACCA performance.