Gangotree Chakma, Nicholas D. Skuda, Catherine D. Schuman, J. Plank, Mark E. Dean, G. Rose
{"title":"资源受限设备神经形态计算中的能量和面积效率","authors":"Gangotree Chakma, Nicholas D. Skuda, Catherine D. Schuman, J. Plank, Mark E. Dean, G. Rose","doi":"10.1145/3194554.3194611","DOIUrl":null,"url":null,"abstract":"Resource constrained devices are the building blocks of the internet of things (IoT) era. Since the idea behind IoT is to develop an interconnected environment where the devices are tiny enough to operate with limited resources, several control systems have been built to maintain low energy and area consumption while operating as IoT edge devices. Several researchers have begun work on implementing control systems built from resource constrained devices using machine learning. However, there are many ways such devices can achieve lower power consumption and area utilization while maximizing application efficiency. Spiky neuromorphic computing (SNC) is an emerging paradigm that can be leveraged in resource constrained devices for several emerging applications. While delivering the benefits of machine learning, SNC also helps minimize power consumption. For example, low energy memory devices (memristors) are often used to achieve low power operation and also help in reducing system area. In total, we anticipate SNC will provide computational efficiency approaching that of deep learning while using low power, resource constrained devices.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy and Area Efficiency in Neuromorphic Computing for Resource Constrained Devices\",\"authors\":\"Gangotree Chakma, Nicholas D. Skuda, Catherine D. Schuman, J. Plank, Mark E. Dean, G. Rose\",\"doi\":\"10.1145/3194554.3194611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource constrained devices are the building blocks of the internet of things (IoT) era. Since the idea behind IoT is to develop an interconnected environment where the devices are tiny enough to operate with limited resources, several control systems have been built to maintain low energy and area consumption while operating as IoT edge devices. Several researchers have begun work on implementing control systems built from resource constrained devices using machine learning. However, there are many ways such devices can achieve lower power consumption and area utilization while maximizing application efficiency. Spiky neuromorphic computing (SNC) is an emerging paradigm that can be leveraged in resource constrained devices for several emerging applications. While delivering the benefits of machine learning, SNC also helps minimize power consumption. For example, low energy memory devices (memristors) are often used to achieve low power operation and also help in reducing system area. In total, we anticipate SNC will provide computational efficiency approaching that of deep learning while using low power, resource constrained devices.\",\"PeriodicalId\":215940,\"journal\":{\"name\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194554.3194611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy and Area Efficiency in Neuromorphic Computing for Resource Constrained Devices
Resource constrained devices are the building blocks of the internet of things (IoT) era. Since the idea behind IoT is to develop an interconnected environment where the devices are tiny enough to operate with limited resources, several control systems have been built to maintain low energy and area consumption while operating as IoT edge devices. Several researchers have begun work on implementing control systems built from resource constrained devices using machine learning. However, there are many ways such devices can achieve lower power consumption and area utilization while maximizing application efficiency. Spiky neuromorphic computing (SNC) is an emerging paradigm that can be leveraged in resource constrained devices for several emerging applications. While delivering the benefits of machine learning, SNC also helps minimize power consumption. For example, low energy memory devices (memristors) are often used to achieve low power operation and also help in reducing system area. In total, we anticipate SNC will provide computational efficiency approaching that of deep learning while using low power, resource constrained devices.