基于神经网络的脑图像分类模型的实证性能分析

Pranati Satapathy, S. Pradhan, Sarbeswara Hota
{"title":"基于神经网络的脑图像分类模型的实证性能分析","authors":"Pranati Satapathy, S. Pradhan, Sarbeswara Hota","doi":"10.1109/ICAML48257.2019.00025","DOIUrl":null,"url":null,"abstract":"This paper presents the empirical comparison of different neural network models for the classification of brain Magnetic Resonance Images (MRIs). This work comprises of four stages i.e. dataset collection, feature extraction, feature reduction and classification. The two brain MRI datasets i.e. the Glioma and Alzheimer datasets are considered for this work. Discrete wavelet transformation (DWT) technique is used for the extraction of features from brain MRIs. Principal Component Analysis (PCA) technique is used to for feature reduction to get relevant features. For the classification task, two variants of neural networks i.e. Backpropagation Neural Network (BPNN) and Extreme Learning Machine (ELM) are used and the classification performances are compared using different performance measures. The simulation study exhibits that DWT+PCA+ELM model outperformed the other models for the classification of normal and diseased brain for the two datasets.","PeriodicalId":369667,"journal":{"name":"2019 International Conference on Applied Machine Learning (ICAML)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Empirical Performance Analysis of Brain Image Classification Models Using Variants of Neural Networks\",\"authors\":\"Pranati Satapathy, S. Pradhan, Sarbeswara Hota\",\"doi\":\"10.1109/ICAML48257.2019.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the empirical comparison of different neural network models for the classification of brain Magnetic Resonance Images (MRIs). This work comprises of four stages i.e. dataset collection, feature extraction, feature reduction and classification. The two brain MRI datasets i.e. the Glioma and Alzheimer datasets are considered for this work. Discrete wavelet transformation (DWT) technique is used for the extraction of features from brain MRIs. Principal Component Analysis (PCA) technique is used to for feature reduction to get relevant features. For the classification task, two variants of neural networks i.e. Backpropagation Neural Network (BPNN) and Extreme Learning Machine (ELM) are used and the classification performances are compared using different performance measures. The simulation study exhibits that DWT+PCA+ELM model outperformed the other models for the classification of normal and diseased brain for the two datasets.\",\"PeriodicalId\":369667,\"journal\":{\"name\":\"2019 International Conference on Applied Machine Learning (ICAML)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Applied Machine Learning (ICAML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAML48257.2019.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Applied Machine Learning (ICAML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAML48257.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对不同神经网络模型在脑磁共振图像分类中的应用进行了实证比较。该工作包括数据集收集、特征提取、特征约简和分类四个阶段。两个脑MRI数据集,即胶质瘤和阿尔茨海默氏症的数据集被认为是这项工作。采用离散小波变换(DWT)技术对脑核磁共振图像进行特征提取。采用主成分分析(PCA)技术进行特征约简,得到相关特征。对于分类任务,使用了神经网络的两种变体,即反向传播神经网络(BPNN)和极限学习机(ELM),并使用不同的性能指标比较了分类性能。仿真研究表明,对于这两个数据集,DWT+PCA+ELM模型在正常和病变脑的分类上优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Performance Analysis of Brain Image Classification Models Using Variants of Neural Networks
This paper presents the empirical comparison of different neural network models for the classification of brain Magnetic Resonance Images (MRIs). This work comprises of four stages i.e. dataset collection, feature extraction, feature reduction and classification. The two brain MRI datasets i.e. the Glioma and Alzheimer datasets are considered for this work. Discrete wavelet transformation (DWT) technique is used for the extraction of features from brain MRIs. Principal Component Analysis (PCA) technique is used to for feature reduction to get relevant features. For the classification task, two variants of neural networks i.e. Backpropagation Neural Network (BPNN) and Extreme Learning Machine (ELM) are used and the classification performances are compared using different performance measures. The simulation study exhibits that DWT+PCA+ELM model outperformed the other models for the classification of normal and diseased brain for the two datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信