利用经验模态分解和去趋势波动分析进行EOG去噪

A. Mert, N. Akkurt, A. Akan
{"title":"利用经验模态分解和去趋势波动分析进行EOG去噪","authors":"A. Mert, N. Akkurt, A. Akan","doi":"10.1109/SIU.2014.6830286","DOIUrl":null,"url":null,"abstract":"In this study, a method is presented for the removal of electrooculogram (EOG) noise from electroencephalography (EEG) recordings by using recently proposed data driven approach called Empirical Mode Decomposition (EMD). The EMD represents the signal as a combination of Intrinsic Mode Functions (IMFs). It is an important problem to determine which IMFs belong to signal and noise in multi-component or noisy signals. Detrended Fluctuation Analysis (DFA) is a successful method to characterize non-stationary signals. In our approach, a threshold is determined from the DFA, and used to select the noise IMFs. Performance of the proposed method is demonstrated by means of computer simulations using noisy EEG signals.","PeriodicalId":384835,"journal":{"name":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"EOG denoising using Empirical Mode Decomposition and Detrended Fluctuation Analysis\",\"authors\":\"A. Mert, N. Akkurt, A. Akan\",\"doi\":\"10.1109/SIU.2014.6830286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a method is presented for the removal of electrooculogram (EOG) noise from electroencephalography (EEG) recordings by using recently proposed data driven approach called Empirical Mode Decomposition (EMD). The EMD represents the signal as a combination of Intrinsic Mode Functions (IMFs). It is an important problem to determine which IMFs belong to signal and noise in multi-component or noisy signals. Detrended Fluctuation Analysis (DFA) is a successful method to characterize non-stationary signals. In our approach, a threshold is determined from the DFA, and used to select the noise IMFs. Performance of the proposed method is demonstrated by means of computer simulations using noisy EEG signals.\",\"PeriodicalId\":384835,\"journal\":{\"name\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2014.6830286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项研究中,提出了一种从脑电图(EEG)记录中去除眼电图(EOG)噪声的方法,该方法使用了最近提出的数据驱动方法,称为经验模式分解(EMD)。EMD将信号表示为内禀模态函数(IMFs)的组合。在多分量或有噪声的信号中,如何确定干扰素是信号还是噪声是一个重要的问题。去趋势波动分析(DFA)是表征非平稳信号的一种成功方法。在我们的方法中,从DFA确定阈值,并用于选择噪声imf。利用带噪声的脑电信号进行计算机仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EOG denoising using Empirical Mode Decomposition and Detrended Fluctuation Analysis
In this study, a method is presented for the removal of electrooculogram (EOG) noise from electroencephalography (EEG) recordings by using recently proposed data driven approach called Empirical Mode Decomposition (EMD). The EMD represents the signal as a combination of Intrinsic Mode Functions (IMFs). It is an important problem to determine which IMFs belong to signal and noise in multi-component or noisy signals. Detrended Fluctuation Analysis (DFA) is a successful method to characterize non-stationary signals. In our approach, a threshold is determined from the DFA, and used to select the noise IMFs. Performance of the proposed method is demonstrated by means of computer simulations using noisy EEG signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信