P. Lorenzi, V. Sucre, G. Romano, R. Rao, F. Irrera
{"title":"基于忆阻器的视觉模式识别神经形态电路","authors":"P. Lorenzi, V. Sucre, G. Romano, R. Rao, F. Irrera","doi":"10.1109/MEMRISYS.2015.7378387","DOIUrl":null,"url":null,"abstract":"In this work a simple network composed by a first 25 sensory neurons layer and a second 10 output neuron layer connected by 250 memristor synapses is proposed. The system was simulated in PSPICE in order to recognize 5X5 pixel binary images.","PeriodicalId":159041,"journal":{"name":"2015 International Conference on Memristive Systems (MEMRISYS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Memristor based neuromorphic circuit for visual pattern recognition\",\"authors\":\"P. Lorenzi, V. Sucre, G. Romano, R. Rao, F. Irrera\",\"doi\":\"10.1109/MEMRISYS.2015.7378387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a simple network composed by a first 25 sensory neurons layer and a second 10 output neuron layer connected by 250 memristor synapses is proposed. The system was simulated in PSPICE in order to recognize 5X5 pixel binary images.\",\"PeriodicalId\":159041,\"journal\":{\"name\":\"2015 International Conference on Memristive Systems (MEMRISYS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Memristive Systems (MEMRISYS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMRISYS.2015.7378387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Memristive Systems (MEMRISYS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMRISYS.2015.7378387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memristor based neuromorphic circuit for visual pattern recognition
In this work a simple network composed by a first 25 sensory neurons layer and a second 10 output neuron layer connected by 250 memristor synapses is proposed. The system was simulated in PSPICE in order to recognize 5X5 pixel binary images.