{"title":"红外有机硅光电探测器的研究","authors":"Samira Lotfi, A. Gholami, M. Sedghi","doi":"10.1109/WACOWC.2019.8770199","DOIUrl":null,"url":null,"abstract":"Silicon-organic hybrid photodetectors (HPD)could be considered as a replacement for expensive low-bandgap photodetectors, thanks to their low-cost fabrication process and the possibility to realize large surface and also large array of photodetectors which is advantageous for wireless optical communications. In silicon-organic HPDs, the light absorption occurs effectively at the heterojunction interface. The difference of energy levels at the silicon-organic heterojunction interface provides a valid energy state for hybrid charge transfer excitons and accordingly, the absorption at the interface is justified by excitonic absorption. We analyzed and modeled the infrared silicon-organic hybrid photodetectors in both dynamic and steady-state conditions. According to the results, a silicon organic HPD was designed with 175 MHz operating bandwidth which could be applicable in many optical wireless communication systems.","PeriodicalId":375524,"journal":{"name":"2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of Infrared Silicon-Organic Photodetectors\",\"authors\":\"Samira Lotfi, A. Gholami, M. Sedghi\",\"doi\":\"10.1109/WACOWC.2019.8770199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-organic hybrid photodetectors (HPD)could be considered as a replacement for expensive low-bandgap photodetectors, thanks to their low-cost fabrication process and the possibility to realize large surface and also large array of photodetectors which is advantageous for wireless optical communications. In silicon-organic HPDs, the light absorption occurs effectively at the heterojunction interface. The difference of energy levels at the silicon-organic heterojunction interface provides a valid energy state for hybrid charge transfer excitons and accordingly, the absorption at the interface is justified by excitonic absorption. We analyzed and modeled the infrared silicon-organic hybrid photodetectors in both dynamic and steady-state conditions. According to the results, a silicon organic HPD was designed with 175 MHz operating bandwidth which could be applicable in many optical wireless communication systems.\",\"PeriodicalId\":375524,\"journal\":{\"name\":\"2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACOWC.2019.8770199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACOWC.2019.8770199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Infrared Silicon-Organic Photodetectors
Silicon-organic hybrid photodetectors (HPD)could be considered as a replacement for expensive low-bandgap photodetectors, thanks to their low-cost fabrication process and the possibility to realize large surface and also large array of photodetectors which is advantageous for wireless optical communications. In silicon-organic HPDs, the light absorption occurs effectively at the heterojunction interface. The difference of energy levels at the silicon-organic heterojunction interface provides a valid energy state for hybrid charge transfer excitons and accordingly, the absorption at the interface is justified by excitonic absorption. We analyzed and modeled the infrared silicon-organic hybrid photodetectors in both dynamic and steady-state conditions. According to the results, a silicon organic HPD was designed with 175 MHz operating bandwidth which could be applicable in many optical wireless communication systems.