基于Sentinel-1 Sar数据的烧伤区域多极化检测与分类方法

E. Ferrentino, F. Nunziata, A. Buono, M. Sarti, M. Migliaccio
{"title":"基于Sentinel-1 Sar数据的烧伤区域多极化检测与分类方法","authors":"E. Ferrentino, F. Nunziata, A. Buono, M. Sarti, M. Migliaccio","doi":"10.1109/rtsi50628.2021.9597245","DOIUrl":null,"url":null,"abstract":"In this study, multi-polarization Synthetic Aperture Radar (SAR) features extracted from Sentinel-1 C-band SAR measurements are used to identify wildfires and to classify burn severity. SAR features include co- and cross-polarized normalized radar cross sections and the total backscattered power, namely the SPAN. The test case refers to the wildfire that affected about 10 km2 in Tuscany region (Central Italy) during September 2018. Experiments, undertaken on actual SAR data, collected before and after the considered wildfire, demonstrate the soundness of the proposed approach and the different sensitivity of the multi-polarization backscattering features to burn severity.","PeriodicalId":294628,"journal":{"name":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Polarization Methods to Detect and Classify Burned Areas using Sentinel-1 Sar Data\",\"authors\":\"E. Ferrentino, F. Nunziata, A. Buono, M. Sarti, M. Migliaccio\",\"doi\":\"10.1109/rtsi50628.2021.9597245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, multi-polarization Synthetic Aperture Radar (SAR) features extracted from Sentinel-1 C-band SAR measurements are used to identify wildfires and to classify burn severity. SAR features include co- and cross-polarized normalized radar cross sections and the total backscattered power, namely the SPAN. The test case refers to the wildfire that affected about 10 km2 in Tuscany region (Central Italy) during September 2018. Experiments, undertaken on actual SAR data, collected before and after the considered wildfire, demonstrate the soundness of the proposed approach and the different sensitivity of the multi-polarization backscattering features to burn severity.\",\"PeriodicalId\":294628,\"journal\":{\"name\":\"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rtsi50628.2021.9597245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtsi50628.2021.9597245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,利用Sentinel-1 c波段SAR测量数据提取的多极化合成孔径雷达(SAR)特征来识别野火并对烧伤程度进行分类。SAR特征包括共极化和交叉极化归一化雷达截面和总后向散射功率,即SPAN。测试案例指的是2018年9月影响托斯卡纳地区(意大利中部)约10平方公里的野火。在考虑的野火前后收集的实际SAR数据上进行的实验证明了该方法的有效性,以及多极化后向散射特征对烧伤严重程度的不同灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Polarization Methods to Detect and Classify Burned Areas using Sentinel-1 Sar Data
In this study, multi-polarization Synthetic Aperture Radar (SAR) features extracted from Sentinel-1 C-band SAR measurements are used to identify wildfires and to classify burn severity. SAR features include co- and cross-polarized normalized radar cross sections and the total backscattered power, namely the SPAN. The test case refers to the wildfire that affected about 10 km2 in Tuscany region (Central Italy) during September 2018. Experiments, undertaken on actual SAR data, collected before and after the considered wildfire, demonstrate the soundness of the proposed approach and the different sensitivity of the multi-polarization backscattering features to burn severity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信