Zhihua Wang, Rong Huang, D. Moon, S. Ercişli, Liang Chen
{"title":"茶树重要品质农艺性状QTL定位及有益基因和等位基因挖掘的成果与展望","authors":"Zhihua Wang, Rong Huang, D. Moon, S. Ercişli, Liang Chen","doi":"10.48130/bpr-2023-0022","DOIUrl":null,"url":null,"abstract":"Tea is one of the most significant non-alcoholic beverages globally due to its unique secondary metabolites. Therefore, it is essential to apply molecular technologies in conjunction with various phenotypes for candidate gene mining and identification, regulating the synthesis and degradation of secondary metabolites contributing to tea quality, in order to enhance effective tea breeding. To date, there are various tea genetic resources and numerous high-density genetic maps owing to the progress and development of the tea plant genome. In this review, we comprehensively reflect the mining and identification of quality-related candidate genes using quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) in tea plants in recent years. Functional verification and promotion of these candidate genes were also discussed.","PeriodicalId":223765,"journal":{"name":"Beverage Plant Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achievements and prospects of QTL mapping and beneficial genes and alleles mining for important quality and agronomic traits in tea plant (Camellia sinensis)\",\"authors\":\"Zhihua Wang, Rong Huang, D. Moon, S. Ercişli, Liang Chen\",\"doi\":\"10.48130/bpr-2023-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tea is one of the most significant non-alcoholic beverages globally due to its unique secondary metabolites. Therefore, it is essential to apply molecular technologies in conjunction with various phenotypes for candidate gene mining and identification, regulating the synthesis and degradation of secondary metabolites contributing to tea quality, in order to enhance effective tea breeding. To date, there are various tea genetic resources and numerous high-density genetic maps owing to the progress and development of the tea plant genome. In this review, we comprehensively reflect the mining and identification of quality-related candidate genes using quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) in tea plants in recent years. Functional verification and promotion of these candidate genes were also discussed.\",\"PeriodicalId\":223765,\"journal\":{\"name\":\"Beverage Plant Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beverage Plant Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48130/bpr-2023-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beverage Plant Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48130/bpr-2023-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achievements and prospects of QTL mapping and beneficial genes and alleles mining for important quality and agronomic traits in tea plant (Camellia sinensis)
Tea is one of the most significant non-alcoholic beverages globally due to its unique secondary metabolites. Therefore, it is essential to apply molecular technologies in conjunction with various phenotypes for candidate gene mining and identification, regulating the synthesis and degradation of secondary metabolites contributing to tea quality, in order to enhance effective tea breeding. To date, there are various tea genetic resources and numerous high-density genetic maps owing to the progress and development of the tea plant genome. In this review, we comprehensively reflect the mining and identification of quality-related candidate genes using quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) in tea plants in recent years. Functional verification and promotion of these candidate genes were also discussed.