{"title":"基于SiC器件的分式充电概念的高效电动汽车电池充电器","authors":"T. Kanstad, Morten Birkerod Lillholm, Zhe Zhang","doi":"10.1109/APEC.2019.8722191","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of the fractional power conversion concept for use in an on-board charger for Electric Vehicles (EV). High gain step up topologies are required and an efficiency analysis of the full bridge boost converter is made. A comparison of many power devices including Si, GAN and SiC devices concludes that SiC devices are well suited for this application. Using loss equations and battery charging characteristics the converter is optimized for low loss in a full battery charge cycle. Switching-average methods model the small signal characteristics and a PI controller is implemented. The fractional charging configuration results in a very high current gain. A 100 kHz prototype was tested on a 300 V EV battery, achieving a converter efficiency of 97.6%. For a 400 V battery the charger can charge 4 kW at more than 98% efficiency. The power density of the charger is 3.6 kW/L.","PeriodicalId":142409,"journal":{"name":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Highly Efficient EV Battery Charger Using Fractional Charging Concept with SiC Devices\",\"authors\":\"T. Kanstad, Morten Birkerod Lillholm, Zhe Zhang\",\"doi\":\"10.1109/APEC.2019.8722191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the implementation of the fractional power conversion concept for use in an on-board charger for Electric Vehicles (EV). High gain step up topologies are required and an efficiency analysis of the full bridge boost converter is made. A comparison of many power devices including Si, GAN and SiC devices concludes that SiC devices are well suited for this application. Using loss equations and battery charging characteristics the converter is optimized for low loss in a full battery charge cycle. Switching-average methods model the small signal characteristics and a PI controller is implemented. The fractional charging configuration results in a very high current gain. A 100 kHz prototype was tested on a 300 V EV battery, achieving a converter efficiency of 97.6%. For a 400 V battery the charger can charge 4 kW at more than 98% efficiency. The power density of the charger is 3.6 kW/L.\",\"PeriodicalId\":142409,\"journal\":{\"name\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2019.8722191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2019.8722191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
摘要
本文介绍了用于电动汽车车载充电器的分数功率转换概念的实现。需要高增益升压拓扑结构,并对全桥升压变换器进行了效率分析。对包括硅、氮化镓和SiC器件在内的许多功率器件的比较得出结论,SiC器件非常适合这种应用。利用损耗方程和电池充电特性对变换器进行了优化,使其在全电池充电周期内具有较低的损耗。采用开关平均法对小信号特性进行建模,并实现PI控制器。分数充电配置导致非常高的电流增益。在300 V EV电池上测试了100 kHz原型,实现了97.6%的转换器效率。对于一个400v的电池,充电器可以以98%以上的效率充电4千瓦。充电器的功率密度为3.6 kW/L。
Highly Efficient EV Battery Charger Using Fractional Charging Concept with SiC Devices
This paper describes the implementation of the fractional power conversion concept for use in an on-board charger for Electric Vehicles (EV). High gain step up topologies are required and an efficiency analysis of the full bridge boost converter is made. A comparison of many power devices including Si, GAN and SiC devices concludes that SiC devices are well suited for this application. Using loss equations and battery charging characteristics the converter is optimized for low loss in a full battery charge cycle. Switching-average methods model the small signal characteristics and a PI controller is implemented. The fractional charging configuration results in a very high current gain. A 100 kHz prototype was tested on a 300 V EV battery, achieving a converter efficiency of 97.6%. For a 400 V battery the charger can charge 4 kW at more than 98% efficiency. The power density of the charger is 3.6 kW/L.