利用WIPL-D对输电线路结构进行动态分析

J. Stamm, T. Sarkar, B. Kolundžija, M. Salazar-Palma
{"title":"利用WIPL-D对输电线路结构进行动态分析","authors":"J. Stamm, T. Sarkar, B. Kolundžija, M. Salazar-Palma","doi":"10.1109/EPEP.2001.967610","DOIUrl":null,"url":null,"abstract":"In packaging systems it is necessary to compute radiation from printed circuits. Analysis of radiation from printed circuits is quite difficult because the codes that are generally used for far fast efficient calculation of transients on these systems due to different loads are often not capable of analyzing radiation. On the other hand, dynamic solutions that calculate radiation from printed circuits often require large computational resources as it needs to calculate the electric fields from structures that are very closely spaced and thus require significant computational accuracy. What we show is that using entire domain basis one can provide accurate dynamic solutions for transmission like structures. Because in this expansion one uses an entire domain basis, the charge along the structure is continuous and therefore provides accurate values of the near fields. Typically in using an entire domain basis one can reduce the size of the matrix on large structures typically by a factor of ten. Hence large packaging problems can be solved using modest computational resources quite efficiently. Numerical results are presented to illustrate these principles.","PeriodicalId":174339,"journal":{"name":"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of transmission line structures using a dynamic analysis through WIPL-D\",\"authors\":\"J. Stamm, T. Sarkar, B. Kolundžija, M. Salazar-Palma\",\"doi\":\"10.1109/EPEP.2001.967610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In packaging systems it is necessary to compute radiation from printed circuits. Analysis of radiation from printed circuits is quite difficult because the codes that are generally used for far fast efficient calculation of transients on these systems due to different loads are often not capable of analyzing radiation. On the other hand, dynamic solutions that calculate radiation from printed circuits often require large computational resources as it needs to calculate the electric fields from structures that are very closely spaced and thus require significant computational accuracy. What we show is that using entire domain basis one can provide accurate dynamic solutions for transmission like structures. Because in this expansion one uses an entire domain basis, the charge along the structure is continuous and therefore provides accurate values of the near fields. Typically in using an entire domain basis one can reduce the size of the matrix on large structures typically by a factor of ten. Hence large packaging problems can be solved using modest computational resources quite efficiently. Numerical results are presented to illustrate these principles.\",\"PeriodicalId\":174339,\"journal\":{\"name\":\"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2001.967610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2001.967610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在封装系统中,有必要计算印刷电路的辐射。分析印刷电路的辐射是相当困难的,因为通常用于快速有效地计算这些系统因不同负载而引起的瞬态的代码往往不能分析辐射。另一方面,计算印刷电路辐射的动态解决方案通常需要大量的计算资源,因为它需要计算距离非常近的结构的电场,因此需要很高的计算精度。我们的研究表明,使用全域基可以为传动类结构提供精确的动力解。因为在这种展开中,人们使用了整个域基,所以沿结构的电荷是连续的,因此提供了近场的精确值。通常,在使用整个域基时,可以将大型结构上的矩阵大小减小十倍。因此,大型封装问题可以使用适度的计算资源相当有效地解决。给出了数值结果来说明这些原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of transmission line structures using a dynamic analysis through WIPL-D
In packaging systems it is necessary to compute radiation from printed circuits. Analysis of radiation from printed circuits is quite difficult because the codes that are generally used for far fast efficient calculation of transients on these systems due to different loads are often not capable of analyzing radiation. On the other hand, dynamic solutions that calculate radiation from printed circuits often require large computational resources as it needs to calculate the electric fields from structures that are very closely spaced and thus require significant computational accuracy. What we show is that using entire domain basis one can provide accurate dynamic solutions for transmission like structures. Because in this expansion one uses an entire domain basis, the charge along the structure is continuous and therefore provides accurate values of the near fields. Typically in using an entire domain basis one can reduce the size of the matrix on large structures typically by a factor of ten. Hence large packaging problems can be solved using modest computational resources quite efficiently. Numerical results are presented to illustrate these principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信