Abhijit Dey, P. More, P. Khanna, A. Sikder, S. Chattopadhyay
{"title":"聚合物基石墨烯/氧化锌纳米晶体(GZnNC):一种杰出的热电能量转换材料","authors":"Abhijit Dey, P. More, P. Khanna, A. Sikder, S. Chattopadhyay","doi":"10.15761/AMS.1000119","DOIUrl":null,"url":null,"abstract":"This work presents the synthesis of a new material, graphene/zinc oxide nano composite (GZnNC) by employing ultrasonication techniques where nano-ZnO and graphene nano-sheet have been dispersed in ethanol followed by microwave irradiation. The GZnNC was well characterized by XRD, HRTEM, FTIR, and Raman spectroscopy. Also, polymer based GZnNC has been subjected to the measurement of energy harvesting/thermoelectric properties. Present study includes PVAc, PVAc/PEDOT: PSS, and PEDOT: PSS based compositions with concentration variation of GZnNC/graphene and measurement of thermoelectric properties like electrical conductivity, Seebeck coefficient, power factor (PF), thermal conductivity and figure of merit(ZT). PEDOT: PSS/GZnNC composite showed the twelvefold increase in electrical conductivity and two times increase in Seebeck coefficient as compared to the PVAc-graphene composite. Interestingly, the calculated power factor for PEDOT: PSS/GZnNC composite increases up to 50 times as compared to PVAc/graphene composite. Thermal conductivity gets reduced to 3.01 W/mK Hence, figure of merit is reached up to 0.0051. This value is comparatively very high compare to the existing nanocomposites. Correspondence to: Arun K. Sikder, EMR Division, High Energy Material Research Lab, Sutarwadi, Pune-411021, India, E-mail: ak_sikder@rediffmail.com","PeriodicalId":408511,"journal":{"name":"Advances in Materials Sciences","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polymer based graphene/zinc oxide nano crystal (GZnNC): an outstanding thermoelectrical energy conversion material\",\"authors\":\"Abhijit Dey, P. More, P. Khanna, A. Sikder, S. Chattopadhyay\",\"doi\":\"10.15761/AMS.1000119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the synthesis of a new material, graphene/zinc oxide nano composite (GZnNC) by employing ultrasonication techniques where nano-ZnO and graphene nano-sheet have been dispersed in ethanol followed by microwave irradiation. The GZnNC was well characterized by XRD, HRTEM, FTIR, and Raman spectroscopy. Also, polymer based GZnNC has been subjected to the measurement of energy harvesting/thermoelectric properties. Present study includes PVAc, PVAc/PEDOT: PSS, and PEDOT: PSS based compositions with concentration variation of GZnNC/graphene and measurement of thermoelectric properties like electrical conductivity, Seebeck coefficient, power factor (PF), thermal conductivity and figure of merit(ZT). PEDOT: PSS/GZnNC composite showed the twelvefold increase in electrical conductivity and two times increase in Seebeck coefficient as compared to the PVAc-graphene composite. Interestingly, the calculated power factor for PEDOT: PSS/GZnNC composite increases up to 50 times as compared to PVAc/graphene composite. Thermal conductivity gets reduced to 3.01 W/mK Hence, figure of merit is reached up to 0.0051. This value is comparatively very high compare to the existing nanocomposites. Correspondence to: Arun K. Sikder, EMR Division, High Energy Material Research Lab, Sutarwadi, Pune-411021, India, E-mail: ak_sikder@rediffmail.com\",\"PeriodicalId\":408511,\"journal\":{\"name\":\"Advances in Materials Sciences\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15761/AMS.1000119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/AMS.1000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polymer based graphene/zinc oxide nano crystal (GZnNC): an outstanding thermoelectrical energy conversion material
This work presents the synthesis of a new material, graphene/zinc oxide nano composite (GZnNC) by employing ultrasonication techniques where nano-ZnO and graphene nano-sheet have been dispersed in ethanol followed by microwave irradiation. The GZnNC was well characterized by XRD, HRTEM, FTIR, and Raman spectroscopy. Also, polymer based GZnNC has been subjected to the measurement of energy harvesting/thermoelectric properties. Present study includes PVAc, PVAc/PEDOT: PSS, and PEDOT: PSS based compositions with concentration variation of GZnNC/graphene and measurement of thermoelectric properties like electrical conductivity, Seebeck coefficient, power factor (PF), thermal conductivity and figure of merit(ZT). PEDOT: PSS/GZnNC composite showed the twelvefold increase in electrical conductivity and two times increase in Seebeck coefficient as compared to the PVAc-graphene composite. Interestingly, the calculated power factor for PEDOT: PSS/GZnNC composite increases up to 50 times as compared to PVAc/graphene composite. Thermal conductivity gets reduced to 3.01 W/mK Hence, figure of merit is reached up to 0.0051. This value is comparatively very high compare to the existing nanocomposites. Correspondence to: Arun K. Sikder, EMR Division, High Energy Material Research Lab, Sutarwadi, Pune-411021, India, E-mail: ak_sikder@rediffmail.com