驾驶员意图预测的长短期记忆

Alex Zyner, Stewart Worrall, James R. Ward, E. Nebot
{"title":"驾驶员意图预测的长短期记忆","authors":"Alex Zyner, Stewart Worrall, James R. Ward, E. Nebot","doi":"10.1109/IVS.2017.7995919","DOIUrl":null,"url":null,"abstract":"Advanced Driver Assistance Systems have been shown to greatly improve road safety. However, existing systems are typically reactive with an inability to understand complex traffic scenarios. We present a method to predict driver intention as the vehicle enters an intersection using a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). The model is learnt using the position, heading and velocity fused from GPS, IMU and odometry data collected by the ego-vehicle. In this paper we focus on determining the earliest possible moment in which we can classify the driver's intention at an intersection. We consider the outcome of this work an essential component for all levels of road vehicle automation.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Long short term memory for driver intent prediction\",\"authors\":\"Alex Zyner, Stewart Worrall, James R. Ward, E. Nebot\",\"doi\":\"10.1109/IVS.2017.7995919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Driver Assistance Systems have been shown to greatly improve road safety. However, existing systems are typically reactive with an inability to understand complex traffic scenarios. We present a method to predict driver intention as the vehicle enters an intersection using a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). The model is learnt using the position, heading and velocity fused from GPS, IMU and odometry data collected by the ego-vehicle. In this paper we focus on determining the earliest possible moment in which we can classify the driver's intention at an intersection. We consider the outcome of this work an essential component for all levels of road vehicle automation.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

先进的驾驶辅助系统已被证明可以大大提高道路安全。然而,现有的系统通常是被动的,无法理解复杂的交通场景。本文提出了一种利用基于长短期记忆(LSTM)的递归神经网络(RNN)预测车辆进入十字路口时驾驶员意图的方法。该模型是利用自驾车收集的GPS、IMU和里程计数据融合的位置、航向和速度来学习的。在本文中,我们的重点是确定最早可能的时刻,我们可以分类驾驶员的意图在一个交叉路口。我们认为这项工作的结果是各级道路车辆自动化的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long short term memory for driver intent prediction
Advanced Driver Assistance Systems have been shown to greatly improve road safety. However, existing systems are typically reactive with an inability to understand complex traffic scenarios. We present a method to predict driver intention as the vehicle enters an intersection using a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). The model is learnt using the position, heading and velocity fused from GPS, IMU and odometry data collected by the ego-vehicle. In this paper we focus on determining the earliest possible moment in which we can classify the driver's intention at an intersection. We consider the outcome of this work an essential component for all levels of road vehicle automation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信