辅助海上风电注水系统的最佳电池调度

Bruna Cardozo de Lima, Renato Machado Monaro, M. B. de Camargo Salles
{"title":"辅助海上风电注水系统的最佳电池调度","authors":"Bruna Cardozo de Lima, Renato Machado Monaro, M. B. de Camargo Salles","doi":"10.1109/EESAT55007.2022.9998024","DOIUrl":null,"url":null,"abstract":"The need to reduce greenhouse gas emissions at global levels drives the implementation of sustainable solutions. The Oil and Gas (O&G) industry is responsible for considerable emission of greenhouse gases and has been pressured to apply sustainable solutions in its process. Among the options to reduce emissions in this sector, Water Injection Systems (WIS) are suitable candidates due to their high energy demand and high pollutants emissions. WIS is essential for any oil exploitation field since it is responsible for increasing the well’s pressure, resulting in a greater Oil Recovery Rate (ORR). Nonetheless, the traditional methods to power these systems include gas turbines and diesel generators, leading to not just environmental problems, but also operation problems related to weight and space restrictions, especially in offshore installations. In this context, an optimization problem is formulated aiming to analyze the operation of a WIS when powered by an offshore wind turbine and a Battery Energy Storage System (BESS). The optimization aims to maximize the water injection and a sensitivity is carried out to verify the influence of the BESS size and motor pump efficiency in the battery dispatch, volume of injected water, number of times that the pump stops, BESS cycles, and energy curtailed. The results have shown that the BESS size has little influence on the volume of water injected, being more effective in reducing the number of pump stops and the number of equivalents cycles of charge and discharge cycles. Moreover, larger BESS provides a smoother operation at a rate lower than 1C. This sensitivity analysis shed light in the expectation of the system related cost reduction and useful life extension of the BESS and WIS.","PeriodicalId":310250,"journal":{"name":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Battery Dispatch to Assist a Water Injection System with Offshore Wind Power\",\"authors\":\"Bruna Cardozo de Lima, Renato Machado Monaro, M. B. de Camargo Salles\",\"doi\":\"10.1109/EESAT55007.2022.9998024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to reduce greenhouse gas emissions at global levels drives the implementation of sustainable solutions. The Oil and Gas (O&G) industry is responsible for considerable emission of greenhouse gases and has been pressured to apply sustainable solutions in its process. Among the options to reduce emissions in this sector, Water Injection Systems (WIS) are suitable candidates due to their high energy demand and high pollutants emissions. WIS is essential for any oil exploitation field since it is responsible for increasing the well’s pressure, resulting in a greater Oil Recovery Rate (ORR). Nonetheless, the traditional methods to power these systems include gas turbines and diesel generators, leading to not just environmental problems, but also operation problems related to weight and space restrictions, especially in offshore installations. In this context, an optimization problem is formulated aiming to analyze the operation of a WIS when powered by an offshore wind turbine and a Battery Energy Storage System (BESS). The optimization aims to maximize the water injection and a sensitivity is carried out to verify the influence of the BESS size and motor pump efficiency in the battery dispatch, volume of injected water, number of times that the pump stops, BESS cycles, and energy curtailed. The results have shown that the BESS size has little influence on the volume of water injected, being more effective in reducing the number of pump stops and the number of equivalents cycles of charge and discharge cycles. Moreover, larger BESS provides a smoother operation at a rate lower than 1C. This sensitivity analysis shed light in the expectation of the system related cost reduction and useful life extension of the BESS and WIS.\",\"PeriodicalId\":310250,\"journal\":{\"name\":\"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EESAT55007.2022.9998024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESAT55007.2022.9998024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内减少温室气体排放的需求推动了可持续解决方案的实施。石油和天然气(O&G)行业排放了大量的温室气体,并且在其过程中一直面临着采用可持续解决方案的压力。在该领域减少排放的选择中,注水系统(WIS)由于其高能耗和高污染物排放而成为合适的候选者。WIS对于任何油田来说都是必不可少的,因为它负责增加油井压力,从而提高石油采收率(ORR)。尽管如此,这些系统的传统供电方式包括燃气轮机和柴油发电机,这不仅会导致环境问题,还会带来与重量和空间限制相关的操作问题,特别是在海上设施中。在此背景下,制定了一个优化问题,旨在分析由海上风力涡轮机和电池储能系统(BESS)供电的WIS的运行情况。优化的目标是最大限度地提高注水量,并对电池调度、注入水量、泵停止次数、BESS循环和能源削减等因素进行敏感性验证,以验证BESS尺寸和电机泵效率的影响。结果表明:BESS尺寸对注入水量的影响较小,在减少泵的停泵次数和充放电循环当量次数方面更为有效。此外,更大的BESS在低于1C的速率下提供更平稳的操作。这种敏感性分析有助于降低系统相关成本,延长BESS和WIS的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Battery Dispatch to Assist a Water Injection System with Offshore Wind Power
The need to reduce greenhouse gas emissions at global levels drives the implementation of sustainable solutions. The Oil and Gas (O&G) industry is responsible for considerable emission of greenhouse gases and has been pressured to apply sustainable solutions in its process. Among the options to reduce emissions in this sector, Water Injection Systems (WIS) are suitable candidates due to their high energy demand and high pollutants emissions. WIS is essential for any oil exploitation field since it is responsible for increasing the well’s pressure, resulting in a greater Oil Recovery Rate (ORR). Nonetheless, the traditional methods to power these systems include gas turbines and diesel generators, leading to not just environmental problems, but also operation problems related to weight and space restrictions, especially in offshore installations. In this context, an optimization problem is formulated aiming to analyze the operation of a WIS when powered by an offshore wind turbine and a Battery Energy Storage System (BESS). The optimization aims to maximize the water injection and a sensitivity is carried out to verify the influence of the BESS size and motor pump efficiency in the battery dispatch, volume of injected water, number of times that the pump stops, BESS cycles, and energy curtailed. The results have shown that the BESS size has little influence on the volume of water injected, being more effective in reducing the number of pump stops and the number of equivalents cycles of charge and discharge cycles. Moreover, larger BESS provides a smoother operation at a rate lower than 1C. This sensitivity analysis shed light in the expectation of the system related cost reduction and useful life extension of the BESS and WIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信