利用分布式声学传感和机器学习跟踪波弗特海局部海冰范围

A. P. Peña Castro, B. Schmandt, M. Baker, R. Abbott
{"title":"利用分布式声学传感和机器学习跟踪波弗特海局部海冰范围","authors":"A. P. Peña Castro, B. Schmandt, M. Baker, R. Abbott","doi":"10.1785/0320230019","DOIUrl":null,"url":null,"abstract":"Monitoring sea ice extent is critical to understand long-term trends in climate change. Here, we show that ambient noise recorded by fiber-optic sensing technology deployed in an Arctic shallow marine seafloor environment can track sea ice extent. We use a 37.4 km long section of fiber-optic cable deployed offshore of Oliktok Point, Alaska. Data are analyzed for two weeks: one in July 2021 and another in November 2021, when there is incomplete and evolving sea ice coverage. We apply different Machine Learning algorithms to identify types of ambient seismic noise in frequency–time scalogram images. We find evidence for two dominant noise types related to excitation of oceanic gravity waves in open water and the presence of sea ice with sufficient strength to suppress wave action. Comparison of the Distributed Acoustic Sensing (DAS) noise clustering results with satellite-based observations indicates that seafloor DAS can complement sea ice constraints from satellite imagery by locally increasing spatial and temporal resolution and tracking for which ice coverage is sufficient to diminish ocean waves.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracking Local Sea Ice Extent in the Beaufort Sea Using Distributed Acoustic Sensing and Machine Learning\",\"authors\":\"A. P. Peña Castro, B. Schmandt, M. Baker, R. Abbott\",\"doi\":\"10.1785/0320230019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring sea ice extent is critical to understand long-term trends in climate change. Here, we show that ambient noise recorded by fiber-optic sensing technology deployed in an Arctic shallow marine seafloor environment can track sea ice extent. We use a 37.4 km long section of fiber-optic cable deployed offshore of Oliktok Point, Alaska. Data are analyzed for two weeks: one in July 2021 and another in November 2021, when there is incomplete and evolving sea ice coverage. We apply different Machine Learning algorithms to identify types of ambient seismic noise in frequency–time scalogram images. We find evidence for two dominant noise types related to excitation of oceanic gravity waves in open water and the presence of sea ice with sufficient strength to suppress wave action. Comparison of the Distributed Acoustic Sensing (DAS) noise clustering results with satellite-based observations indicates that seafloor DAS can complement sea ice constraints from satellite imagery by locally increasing spatial and temporal resolution and tracking for which ice coverage is sufficient to diminish ocean waves.\",\"PeriodicalId\":273018,\"journal\":{\"name\":\"The Seismic Record\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seismic Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0320230019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seismic Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0320230019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

监测海冰范围对于了解气候变化的长期趋势至关重要。在这里,我们展示了在北极浅海海底环境中部署的光纤传感技术记录的环境噪声可以跟踪海冰范围。我们使用的是一段37.4公里长的光纤电缆,部署在阿拉斯加州的奥利托克角(Oliktok Point)近海。数据分析为期两周:一周在2021年7月,另一周在2021年11月,当时海冰覆盖不完整且不断变化。我们应用不同的机器学习算法来识别频率时间尺度图图像中的环境地震噪声类型。我们发现了两种主要噪声类型的证据,它们与开放水域中海洋重力波的激发和海冰的存在有关,海冰的强度足以抑制波浪的作用。分布式声传感(DAS)噪声聚类结果与卫星观测结果的比较表明,海底DAS可以通过局部增加空间和时间分辨率来补充卫星图像中的海冰约束,并跟踪冰层覆盖足以减少海浪的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking Local Sea Ice Extent in the Beaufort Sea Using Distributed Acoustic Sensing and Machine Learning
Monitoring sea ice extent is critical to understand long-term trends in climate change. Here, we show that ambient noise recorded by fiber-optic sensing technology deployed in an Arctic shallow marine seafloor environment can track sea ice extent. We use a 37.4 km long section of fiber-optic cable deployed offshore of Oliktok Point, Alaska. Data are analyzed for two weeks: one in July 2021 and another in November 2021, when there is incomplete and evolving sea ice coverage. We apply different Machine Learning algorithms to identify types of ambient seismic noise in frequency–time scalogram images. We find evidence for two dominant noise types related to excitation of oceanic gravity waves in open water and the presence of sea ice with sufficient strength to suppress wave action. Comparison of the Distributed Acoustic Sensing (DAS) noise clustering results with satellite-based observations indicates that seafloor DAS can complement sea ice constraints from satellite imagery by locally increasing spatial and temporal resolution and tracking for which ice coverage is sufficient to diminish ocean waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信