{"title":"一种新的基于lstm的传输模式检测输入集","authors":"Güven Aşçı, M. A. Güvensan","doi":"10.1109/PERCOMW.2019.8730799","DOIUrl":null,"url":null,"abstract":"The capability of mobile phones are increasing with the development of hardware and software technology. Especially sensors on smartphones enable to collect environmental and personal information. Thus, with the help of smartphones, human activity recognition and transport mode detection (TMD) become the main research areas in the last decade. This study aims to introduce a novel input set for daily activities mainly for transportation modes in order to increase the detection rate. In this study, the frame-based novel input set consisting of time-domain and frequency-domain features is fed to LSTM network. Thus, the classification ratio on HTC public dataset for 10 different transportation modes is climbed up to 97% which is 2% more than the state-of-the-art method in the literature.","PeriodicalId":437017,"journal":{"name":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Novel Input Set for LSTM-Based Transport Mode Detection\",\"authors\":\"Güven Aşçı, M. A. Güvensan\",\"doi\":\"10.1109/PERCOMW.2019.8730799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of mobile phones are increasing with the development of hardware and software technology. Especially sensors on smartphones enable to collect environmental and personal information. Thus, with the help of smartphones, human activity recognition and transport mode detection (TMD) become the main research areas in the last decade. This study aims to introduce a novel input set for daily activities mainly for transportation modes in order to increase the detection rate. In this study, the frame-based novel input set consisting of time-domain and frequency-domain features is fed to LSTM network. Thus, the classification ratio on HTC public dataset for 10 different transportation modes is climbed up to 97% which is 2% more than the state-of-the-art method in the literature.\",\"PeriodicalId\":437017,\"journal\":{\"name\":\"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2019.8730799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2019.8730799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Input Set for LSTM-Based Transport Mode Detection
The capability of mobile phones are increasing with the development of hardware and software technology. Especially sensors on smartphones enable to collect environmental and personal information. Thus, with the help of smartphones, human activity recognition and transport mode detection (TMD) become the main research areas in the last decade. This study aims to introduce a novel input set for daily activities mainly for transportation modes in order to increase the detection rate. In this study, the frame-based novel input set consisting of time-domain and frequency-domain features is fed to LSTM network. Thus, the classification ratio on HTC public dataset for 10 different transportation modes is climbed up to 97% which is 2% more than the state-of-the-art method in the literature.