北欧电力期货市场风险价值平均的表现

Jørgen Andersen Sveinsson, Stein Frydenberg, Sjur Westgaard, Maurits M. Aaløkken
{"title":"北欧电力期货市场风险价值平均的表现","authors":"Jørgen Andersen Sveinsson, Stein Frydenberg, Sjur Westgaard, Maurits M. Aaløkken","doi":"10.21314/jem.2020.207","DOIUrl":null,"url":null,"abstract":"We investigate the performance of various value-at-risk (VaR) models in the context of the highly volatile Nordic power futures market, examining whether simple averages of models provide better results than the individual models themselves. The individual models used are normally distributed GARCH, t-distributed GARCH, t-distributed GJR–GARCH, a quantile regression using RiskMetrics, a quantile regression using t-distributed GARCH, RiskMetrics with Cornish–Fisher and a filtered historical simulation using t-distributed GARCH. We find that RiskMetrics with Cornish–Fisher and normally distributed GARCH perform worse than the other individual models. The average models generally outperform the individual models at a 5% significance level. The conditional independence test reveals that the models are only partially capable of accounting for the volatility clustering of the Nordic power futures. Investors in the Nordic electricity markets should therefore use several methods and average them to be more confident in their VaR estimates.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Value-at-Risk Averaging in the Nordic Power Futures Market\",\"authors\":\"Jørgen Andersen Sveinsson, Stein Frydenberg, Sjur Westgaard, Maurits M. Aaløkken\",\"doi\":\"10.21314/jem.2020.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the performance of various value-at-risk (VaR) models in the context of the highly volatile Nordic power futures market, examining whether simple averages of models provide better results than the individual models themselves. The individual models used are normally distributed GARCH, t-distributed GARCH, t-distributed GJR–GARCH, a quantile regression using RiskMetrics, a quantile regression using t-distributed GARCH, RiskMetrics with Cornish–Fisher and a filtered historical simulation using t-distributed GARCH. We find that RiskMetrics with Cornish–Fisher and normally distributed GARCH perform worse than the other individual models. The average models generally outperform the individual models at a 5% significance level. The conditional independence test reveals that the models are only partially capable of accounting for the volatility clustering of the Nordic power futures. Investors in the Nordic electricity markets should therefore use several methods and average them to be more confident in their VaR estimates.\",\"PeriodicalId\":251522,\"journal\":{\"name\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21314/jem.2020.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/jem.2020.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在高度波动的北欧电力期货市场背景下研究了各种风险价值(VaR)模型的表现,检验了模型的简单平均是否比单个模型本身提供更好的结果。使用的单个模型是正态分布GARCH、t分布GARCH、t分布GJR-GARCH、使用RiskMetrics的分位数回归、使用t分布GARCH的分位数回归、使用Cornish-Fisher的RiskMetrics和使用t分布GARCH的过滤历史模拟。我们发现具有Cornish-Fisher和正态分布GARCH的RiskMetrics比其他单个模型表现更差。平均模型通常在5%的显著性水平上优于单个模型。条件独立性检验表明,该模型仅能部分解释北欧电力期货的波动聚类。因此,北欧电力市场的投资者应该使用几种方法并对其进行平均,以对其VaR估计更有信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Value-at-Risk Averaging in the Nordic Power Futures Market
We investigate the performance of various value-at-risk (VaR) models in the context of the highly volatile Nordic power futures market, examining whether simple averages of models provide better results than the individual models themselves. The individual models used are normally distributed GARCH, t-distributed GARCH, t-distributed GJR–GARCH, a quantile regression using RiskMetrics, a quantile regression using t-distributed GARCH, RiskMetrics with Cornish–Fisher and a filtered historical simulation using t-distributed GARCH. We find that RiskMetrics with Cornish–Fisher and normally distributed GARCH perform worse than the other individual models. The average models generally outperform the individual models at a 5% significance level. The conditional independence test reveals that the models are only partially capable of accounting for the volatility clustering of the Nordic power futures. Investors in the Nordic electricity markets should therefore use several methods and average them to be more confident in their VaR estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信