{"title":"二维串扰避免码","authors":"Xuebin Wu, Zhiyuan Yan, Yuan Xie","doi":"10.1109/SIPS.2008.4671746","DOIUrl":null,"url":null,"abstract":"Global buses in deep submicron system-on-chip designs suffer from increasing crosstalk delay as the feature size shrinks. As an technology-independent solution, crosstalk avoidance coding alleviates the problem while requiring less area and power than shielding. Most previously considered crosstalk avoidance codes are one-dimensional, and have limited code rates. In this paper, we propose two-dimensional crosstalk avoidance codes (TDCAC), which achieve higher code rate at the expense of longer latency. Specifically, we investigate the maximum code rate for TDCAC with and without memory.","PeriodicalId":173371,"journal":{"name":"2008 IEEE Workshop on Signal Processing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Two-dimensional crosstalk avoidance codes\",\"authors\":\"Xuebin Wu, Zhiyuan Yan, Yuan Xie\",\"doi\":\"10.1109/SIPS.2008.4671746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global buses in deep submicron system-on-chip designs suffer from increasing crosstalk delay as the feature size shrinks. As an technology-independent solution, crosstalk avoidance coding alleviates the problem while requiring less area and power than shielding. Most previously considered crosstalk avoidance codes are one-dimensional, and have limited code rates. In this paper, we propose two-dimensional crosstalk avoidance codes (TDCAC), which achieve higher code rate at the expense of longer latency. Specifically, we investigate the maximum code rate for TDCAC with and without memory.\",\"PeriodicalId\":173371,\"journal\":{\"name\":\"2008 IEEE Workshop on Signal Processing Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2008.4671746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2008.4671746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global buses in deep submicron system-on-chip designs suffer from increasing crosstalk delay as the feature size shrinks. As an technology-independent solution, crosstalk avoidance coding alleviates the problem while requiring less area and power than shielding. Most previously considered crosstalk avoidance codes are one-dimensional, and have limited code rates. In this paper, we propose two-dimensional crosstalk avoidance codes (TDCAC), which achieve higher code rate at the expense of longer latency. Specifically, we investigate the maximum code rate for TDCAC with and without memory.