支持条件神经网络动态执行的0.23mW异构深度学习处理器

Hsi-Shou Wu, Zhengya Zhang, M. Papaefthymiou
{"title":"支持条件神经网络动态执行的0.23mW异构深度学习处理器","authors":"Hsi-Shou Wu, Zhengya Zhang, M. Papaefthymiou","doi":"10.1109/ESSCIRC.2018.8494279","DOIUrl":null,"url":null,"abstract":"A deep-learning processor is presented for achieving ultra-low-power operation in mobile applications. Using a heterogeneous architecture that includes a low-power always-on front-end and a selectively-enabled high-performance backend, the processor dynamically adjusts computational resources at runtime to support conditional execution in neural networks and meet performance targets with increased energy efficiency. Featuring a reconfigurable datapath and a memory architecture optimized for energy efficiency, the processor supports multilevel dynamic activation of neural network segments, performing object detection tasks with 5.3×lower energy consumption in comparison with a static baseline design. Fabricated in 40nm CMOS, the processor test-chip dissipates 0.23m W at 5.3 fps. It demonstrates energy scalability up to 28.6 TOPS/W and can be configured to run a variety of workloads, including severely-power-constrained ones such as always-on monitoring in mobile applications.","PeriodicalId":355210,"journal":{"name":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 0.23mW Heterogeneous Deep-Learning Processor Supporting Dynamic Execution of Conditional Neural Networks\",\"authors\":\"Hsi-Shou Wu, Zhengya Zhang, M. Papaefthymiou\",\"doi\":\"10.1109/ESSCIRC.2018.8494279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep-learning processor is presented for achieving ultra-low-power operation in mobile applications. Using a heterogeneous architecture that includes a low-power always-on front-end and a selectively-enabled high-performance backend, the processor dynamically adjusts computational resources at runtime to support conditional execution in neural networks and meet performance targets with increased energy efficiency. Featuring a reconfigurable datapath and a memory architecture optimized for energy efficiency, the processor supports multilevel dynamic activation of neural network segments, performing object detection tasks with 5.3×lower energy consumption in comparison with a static baseline design. Fabricated in 40nm CMOS, the processor test-chip dissipates 0.23m W at 5.3 fps. It demonstrates energy scalability up to 28.6 TOPS/W and can be configured to run a variety of workloads, including severely-power-constrained ones such as always-on monitoring in mobile applications.\",\"PeriodicalId\":355210,\"journal\":{\"name\":\"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2018.8494279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2018.8494279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为实现移动应用中的超低功耗操作,提出了一种深度学习处理器。采用异构架构,包括低功耗的始终在线前端和选择性启用的高性能后端,处理器在运行时动态调整计算资源,以支持神经网络中的条件执行,并以更高的能效满足性能目标。该处理器具有可重构的数据路径和针对能效进行优化的内存架构,支持神经网络段的多级动态激活,与静态基线设计相比,以5.3×lower能耗执行目标检测任务。该处理器测试芯片采用40nm CMOS制造,以5.3 fps的速度耗散0.23m W。它展示了高达28.6 TOPS/W的能量可扩展性,并且可以配置为运行各种工作负载,包括严重受功率限制的工作负载,例如移动应用程序中的始终在线监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 0.23mW Heterogeneous Deep-Learning Processor Supporting Dynamic Execution of Conditional Neural Networks
A deep-learning processor is presented for achieving ultra-low-power operation in mobile applications. Using a heterogeneous architecture that includes a low-power always-on front-end and a selectively-enabled high-performance backend, the processor dynamically adjusts computational resources at runtime to support conditional execution in neural networks and meet performance targets with increased energy efficiency. Featuring a reconfigurable datapath and a memory architecture optimized for energy efficiency, the processor supports multilevel dynamic activation of neural network segments, performing object detection tasks with 5.3×lower energy consumption in comparison with a static baseline design. Fabricated in 40nm CMOS, the processor test-chip dissipates 0.23m W at 5.3 fps. It demonstrates energy scalability up to 28.6 TOPS/W and can be configured to run a variety of workloads, including severely-power-constrained ones such as always-on monitoring in mobile applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信