{"title":"提高大型风力发电系统电压稳定性的综合方法","authors":"B. Maya, S. Sreedharan, J. G. Singh","doi":"10.1109/EPSCICON.2012.6175234","DOIUrl":null,"url":null,"abstract":"This paper investigates the applicability of an integrated approach for the enhancement of voltage stability margin and there by the wind penetration of large wind integrated power systems. The proposed approach involves in two objectives; the identification of weak buses in the given power systems, enhancement of voltage stability margin of the weak buses and there by the wind penetration by optimal placement and tuning of Flexible AC Transmission System (FACTS) controllers. Multiple of one type of FACTS controller namely SVC is used in the current analysis for placement in suitable weak buses. Weak bus identification is carried out by conducting the tangent vector analysis. Voltage stability enhancement at high wind penetration is assessed by using the dynamic voltage security index, the index for accessing the proximity of voltage collapse under dynamic loading conditions. The optimization of grid control parameters are carried out by using Particle Swarm Optimization (PSO) by incorporating FACTS Controllers. The developed algorithm have been tested on Wind integrated Kerala grid 25-bus practical system.","PeriodicalId":143947,"journal":{"name":"2012 International Conference on Power, Signals, Controls and Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An integrated approach for the voltage stability enhancement of large wind integrated power systems\",\"authors\":\"B. Maya, S. Sreedharan, J. G. Singh\",\"doi\":\"10.1109/EPSCICON.2012.6175234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the applicability of an integrated approach for the enhancement of voltage stability margin and there by the wind penetration of large wind integrated power systems. The proposed approach involves in two objectives; the identification of weak buses in the given power systems, enhancement of voltage stability margin of the weak buses and there by the wind penetration by optimal placement and tuning of Flexible AC Transmission System (FACTS) controllers. Multiple of one type of FACTS controller namely SVC is used in the current analysis for placement in suitable weak buses. Weak bus identification is carried out by conducting the tangent vector analysis. Voltage stability enhancement at high wind penetration is assessed by using the dynamic voltage security index, the index for accessing the proximity of voltage collapse under dynamic loading conditions. The optimization of grid control parameters are carried out by using Particle Swarm Optimization (PSO) by incorporating FACTS Controllers. The developed algorithm have been tested on Wind integrated Kerala grid 25-bus practical system.\",\"PeriodicalId\":143947,\"journal\":{\"name\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPSCICON.2012.6175234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Power, Signals, Controls and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPSCICON.2012.6175234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An integrated approach for the voltage stability enhancement of large wind integrated power systems
This paper investigates the applicability of an integrated approach for the enhancement of voltage stability margin and there by the wind penetration of large wind integrated power systems. The proposed approach involves in two objectives; the identification of weak buses in the given power systems, enhancement of voltage stability margin of the weak buses and there by the wind penetration by optimal placement and tuning of Flexible AC Transmission System (FACTS) controllers. Multiple of one type of FACTS controller namely SVC is used in the current analysis for placement in suitable weak buses. Weak bus identification is carried out by conducting the tangent vector analysis. Voltage stability enhancement at high wind penetration is assessed by using the dynamic voltage security index, the index for accessing the proximity of voltage collapse under dynamic loading conditions. The optimization of grid control parameters are carried out by using Particle Swarm Optimization (PSO) by incorporating FACTS Controllers. The developed algorithm have been tested on Wind integrated Kerala grid 25-bus practical system.