北京一号小卫星图像质量提升

Qiong Ran, Yaobin Chi, Zhiyong Wang
{"title":"北京一号小卫星图像质量提升","authors":"Qiong Ran, Yaobin Chi, Zhiyong Wang","doi":"10.1117/12.815550","DOIUrl":null,"url":null,"abstract":"Striping noise and image degradation are the main factors that reduce the quality of Beijing-1 small satellite raw data images, thus noise removal and image restoration are the two important tasks in processing and application of the images. This paper presents efficient noise removal and image restoration methods on analysis of the imaging system characteristics and the image quality reduction principles. The proposed methods evidently improve quality of the images, and are employed in practical processing procedures of Beijing-1 small satellite images.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality improvement of Beijing-1 small satellite images\",\"authors\":\"Qiong Ran, Yaobin Chi, Zhiyong Wang\",\"doi\":\"10.1117/12.815550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Striping noise and image degradation are the main factors that reduce the quality of Beijing-1 small satellite raw data images, thus noise removal and image restoration are the two important tasks in processing and application of the images. This paper presents efficient noise removal and image restoration methods on analysis of the imaging system characteristics and the image quality reduction principles. The proposed methods evidently improve quality of the images, and are employed in practical processing procedures of Beijing-1 small satellite images.\",\"PeriodicalId\":340728,\"journal\":{\"name\":\"China Symposium on Remote Sensing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Symposium on Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.815550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.815550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

条纹噪声和图像退化是降低“北京一号”小卫星原始数据图像质量的主要因素,因此去噪和图像恢复是图像处理和应用中的两项重要任务。在分析成像系统特点和图像降质原理的基础上,提出了有效的去噪和图像恢复方法。该方法明显提高了图像质量,并在北京一号小卫星图像的实际处理过程中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality improvement of Beijing-1 small satellite images
Striping noise and image degradation are the main factors that reduce the quality of Beijing-1 small satellite raw data images, thus noise removal and image restoration are the two important tasks in processing and application of the images. This paper presents efficient noise removal and image restoration methods on analysis of the imaging system characteristics and the image quality reduction principles. The proposed methods evidently improve quality of the images, and are employed in practical processing procedures of Beijing-1 small satellite images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信