{"title":"包封对分子计算效率的影响","authors":"J. Chaplin, N. Krasnogor, Noah A. Russell","doi":"10.1109/FOI.2011.6154848","DOIUrl":null,"url":null,"abstract":"Research into molecular computation offers exciting possibilities for interfacing computation with biological systems. This could be achieved using light to switch photochromic molecules between states. For example, 6-Nitro-BIPS2 can be switched from a Spiropyran (SP) state to a Trans-Merocyanine (MC) state using UV photons while visible light switches from MC to SP. The MC state is also fluorescent. Modified spiropyrans targeted to proteins can improve imaging contrast3, alter enzyme activity4, alter protein interactions5 and switch vesicle permeability6.","PeriodicalId":240419,"journal":{"name":"2011 Functional Optical Imaging","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of encapsulation on molecular computing efficiency\",\"authors\":\"J. Chaplin, N. Krasnogor, Noah A. Russell\",\"doi\":\"10.1109/FOI.2011.6154848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research into molecular computation offers exciting possibilities for interfacing computation with biological systems. This could be achieved using light to switch photochromic molecules between states. For example, 6-Nitro-BIPS2 can be switched from a Spiropyran (SP) state to a Trans-Merocyanine (MC) state using UV photons while visible light switches from MC to SP. The MC state is also fluorescent. Modified spiropyrans targeted to proteins can improve imaging contrast3, alter enzyme activity4, alter protein interactions5 and switch vesicle permeability6.\",\"PeriodicalId\":240419,\"journal\":{\"name\":\"2011 Functional Optical Imaging\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Functional Optical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOI.2011.6154848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Functional Optical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOI.2011.6154848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of encapsulation on molecular computing efficiency
Research into molecular computation offers exciting possibilities for interfacing computation with biological systems. This could be achieved using light to switch photochromic molecules between states. For example, 6-Nitro-BIPS2 can be switched from a Spiropyran (SP) state to a Trans-Merocyanine (MC) state using UV photons while visible light switches from MC to SP. The MC state is also fluorescent. Modified spiropyrans targeted to proteins can improve imaging contrast3, alter enzyme activity4, alter protein interactions5 and switch vesicle permeability6.