在预测交替测试中实现模型冗余,提高测试置信度

H. Ayari, F. Azaïs, S. Bernard, M. Comte, V. Kerzérho, O. Potin, M. Renovell
{"title":"在预测交替测试中实现模型冗余,提高测试置信度","authors":"H. Ayari, F. Azaïs, S. Bernard, M. Comte, V. Kerzérho, O. Potin, M. Renovell","doi":"10.1109/ETS.2013.6569386","DOIUrl":null,"url":null,"abstract":"This work investigates new implementations of the predictive alternate test strategy that exploit model redundancy in order to improve test confidence. The key idea is to build during the training phase, not only one regression model for each specification as in the classical implementation, but several regression models. We explore various options for implementing model redundancy, based on the use of different indirect measurement combinations and/or different partitions of the training set.","PeriodicalId":118063,"journal":{"name":"2013 18th IEEE European Test Symposium (ETS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing model redundancy in predictive alternate test to improve test confidence\",\"authors\":\"H. Ayari, F. Azaïs, S. Bernard, M. Comte, V. Kerzérho, O. Potin, M. Renovell\",\"doi\":\"10.1109/ETS.2013.6569386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates new implementations of the predictive alternate test strategy that exploit model redundancy in order to improve test confidence. The key idea is to build during the training phase, not only one regression model for each specification as in the classical implementation, but several regression models. We explore various options for implementing model redundancy, based on the use of different indirect measurement combinations and/or different partitions of the training set.\",\"PeriodicalId\":118063,\"journal\":{\"name\":\"2013 18th IEEE European Test Symposium (ETS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS.2013.6569386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2013.6569386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了利用模型冗余来提高测试置信度的预测替代测试策略的新实现。关键思想是在训练阶段,不仅要像在经典实现中那样为每个规范构建一个回归模型,而且要构建多个回归模型。基于使用不同的间接测量组合和/或训练集的不同分区,我们探索了实现模型冗余的各种选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing model redundancy in predictive alternate test to improve test confidence
This work investigates new implementations of the predictive alternate test strategy that exploit model redundancy in order to improve test confidence. The key idea is to build during the training phase, not only one regression model for each specification as in the classical implementation, but several regression models. We explore various options for implementing model redundancy, based on the use of different indirect measurement combinations and/or different partitions of the training set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信