基于NARMAX模型的速率相关滞后伪hammerstein辨识

Liang Deng, Ping Yang, Yang Xue, Xueqin Lv
{"title":"基于NARMAX模型的速率相关滞后伪hammerstein辨识","authors":"Liang Deng, Ping Yang, Yang Xue, Xueqin Lv","doi":"10.1109/ICICIP.2014.7010331","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear auto-regressive moving average model with exogenous inputs (NARMAX) based pseudo-Hammerstein model is proposed for the identification of rate-dependent hysteresis. The presented model has the cascade structure comprised of a NARMAX model in series with an auto-regressive moving average (ARMA) model. In view of the multivalued mapping of hysteresis, a hysteretic operator is introduced to establish an expanded input space for the NARMAX model where the change tendency of the rate-dependent hysteresis can be extracted. To avoid the tedious dynamic back-propagation optimization for the auto-regressive (AR) parameters of the NARMAX model within the pseudo-Hammerstein model, a NARMAX model with the introduced hysteretic operator is applied to implement a preliminary identification for the rate-dependent hysteresis. Both the modified Akaike information criterion (MAIC) and the recursive least squares (RLS) algorithm are employed to estimate an appropriate structure and the AR parameters of the NARMAX model. Subsequently, the Levenberg-Ma-rquardt (L-M) algorithm of the pseudo-Hammerstein model is developed to acquire an appropriate structure and the parameters of the ARMA model as well as the remaining parameters of the NARMAX model. Finally, numerical simulation results on a Duhem model of the piezoelectric actuators have demonstrated the effectiveness of the proposed model.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NARMAX model based pseudo-Hammerstein identification for rate-dependent hysteresis\",\"authors\":\"Liang Deng, Ping Yang, Yang Xue, Xueqin Lv\",\"doi\":\"10.1109/ICICIP.2014.7010331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a nonlinear auto-regressive moving average model with exogenous inputs (NARMAX) based pseudo-Hammerstein model is proposed for the identification of rate-dependent hysteresis. The presented model has the cascade structure comprised of a NARMAX model in series with an auto-regressive moving average (ARMA) model. In view of the multivalued mapping of hysteresis, a hysteretic operator is introduced to establish an expanded input space for the NARMAX model where the change tendency of the rate-dependent hysteresis can be extracted. To avoid the tedious dynamic back-propagation optimization for the auto-regressive (AR) parameters of the NARMAX model within the pseudo-Hammerstein model, a NARMAX model with the introduced hysteretic operator is applied to implement a preliminary identification for the rate-dependent hysteresis. Both the modified Akaike information criterion (MAIC) and the recursive least squares (RLS) algorithm are employed to estimate an appropriate structure and the AR parameters of the NARMAX model. Subsequently, the Levenberg-Ma-rquardt (L-M) algorithm of the pseudo-Hammerstein model is developed to acquire an appropriate structure and the parameters of the ARMA model as well as the remaining parameters of the NARMAX model. Finally, numerical simulation results on a Duhem model of the piezoelectric actuators have demonstrated the effectiveness of the proposed model.\",\"PeriodicalId\":408041,\"journal\":{\"name\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2014.7010331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于非线性自回归外生输入移动平均模型(NARMAX)的伪hammerstein模型,用于识别速率相关滞后。该模型是由一个NARMAX模型和一个自回归移动平均(ARMA)模型串联而成的级联结构。针对迟滞的多值映射,引入迟滞算子,为NARMAX模型建立扩展输入空间,提取速率相关迟滞的变化趋势。为了避免在伪hammerstein模型中对NARMAX模型的自回归(AR)参数进行繁琐的动态反向传播优化,采用引入滞后算子的NARMAX模型对速率相关的滞后进行初步辨识。采用改进的赤池信息准则(MAIC)和递推最小二乘(RLS)算法估计出合适的NARMAX模型结构和AR参数。随后,发展拟hammerstein模型的Levenberg-Ma-rquardt (L-M)算法,获得合适的ARMA模型结构和参数,以及NARMAX模型的剩余参数。最后,对压电作动器的Duhem模型进行了数值仿真,验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NARMAX model based pseudo-Hammerstein identification for rate-dependent hysteresis
In this paper, a nonlinear auto-regressive moving average model with exogenous inputs (NARMAX) based pseudo-Hammerstein model is proposed for the identification of rate-dependent hysteresis. The presented model has the cascade structure comprised of a NARMAX model in series with an auto-regressive moving average (ARMA) model. In view of the multivalued mapping of hysteresis, a hysteretic operator is introduced to establish an expanded input space for the NARMAX model where the change tendency of the rate-dependent hysteresis can be extracted. To avoid the tedious dynamic back-propagation optimization for the auto-regressive (AR) parameters of the NARMAX model within the pseudo-Hammerstein model, a NARMAX model with the introduced hysteretic operator is applied to implement a preliminary identification for the rate-dependent hysteresis. Both the modified Akaike information criterion (MAIC) and the recursive least squares (RLS) algorithm are employed to estimate an appropriate structure and the AR parameters of the NARMAX model. Subsequently, the Levenberg-Ma-rquardt (L-M) algorithm of the pseudo-Hammerstein model is developed to acquire an appropriate structure and the parameters of the ARMA model as well as the remaining parameters of the NARMAX model. Finally, numerical simulation results on a Duhem model of the piezoelectric actuators have demonstrated the effectiveness of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信