可进化硬件过程分解策略的遗传规划

Ho-Sik Seok, Kwang-Ju Lee, Byoung-Tak Zhang, Dong-Wook Lee, K. Sim
{"title":"可进化硬件过程分解策略的遗传规划","authors":"Ho-Sik Seok, Kwang-Ju Lee, Byoung-Tak Zhang, Dong-Wook Lee, K. Sim","doi":"10.1109/EH.2000.869339","DOIUrl":null,"url":null,"abstract":"Evolvable hardware is able to offer considerably higher performance than general-purpose processors and significantly more flexibility than ASICs. In order to take the advantages of general-purpose processors and ASICs, dividing a complex process into subprocesses is essential. In this paper, we propose a evolutionary method called context switching that splits a task into a set of subtasks whose complexity is manageable on the given hardware. The method is based on genetic programming. Due to its expressive power generic program can represent flexible strategies for decomposing complex tasks. The effectiveness of context switching is demonstrated on the design of adaptive controllers for a team of autonomous mobile robots.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"1954 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Genetic programming of process decomposition strategies for evolvable hardware\",\"authors\":\"Ho-Sik Seok, Kwang-Ju Lee, Byoung-Tak Zhang, Dong-Wook Lee, K. Sim\",\"doi\":\"10.1109/EH.2000.869339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolvable hardware is able to offer considerably higher performance than general-purpose processors and significantly more flexibility than ASICs. In order to take the advantages of general-purpose processors and ASICs, dividing a complex process into subprocesses is essential. In this paper, we propose a evolutionary method called context switching that splits a task into a set of subtasks whose complexity is manageable on the given hardware. The method is based on genetic programming. Due to its expressive power generic program can represent flexible strategies for decomposing complex tasks. The effectiveness of context switching is demonstrated on the design of adaptive controllers for a team of autonomous mobile robots.\",\"PeriodicalId\":432338,\"journal\":{\"name\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"1954 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2000.869339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

可进化硬件能够提供比通用处理器高得多的性能,并且比asic具有更大的灵活性。为了利用通用处理器和asic的优势,将复杂的进程划分为子进程是必要的。在本文中,我们提出了一种称为上下文切换的进化方法,该方法将任务分解为一组子任务,这些子任务的复杂性在给定的硬件上是可管理的。该方法基于遗传规划。由于泛型程序具有强大的表达能力,它可以表现出灵活的策略来分解复杂的任务。在一个自主移动机器人团队的自适应控制器设计中,验证了上下文切换的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic programming of process decomposition strategies for evolvable hardware
Evolvable hardware is able to offer considerably higher performance than general-purpose processors and significantly more flexibility than ASICs. In order to take the advantages of general-purpose processors and ASICs, dividing a complex process into subprocesses is essential. In this paper, we propose a evolutionary method called context switching that splits a task into a set of subtasks whose complexity is manageable on the given hardware. The method is based on genetic programming. Due to its expressive power generic program can represent flexible strategies for decomposing complex tasks. The effectiveness of context switching is demonstrated on the design of adaptive controllers for a team of autonomous mobile robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信