目标检测中量子近似优化算法的层次改进(特邀论文)

Junde Li, M. Alam, Abdullah Ash-Saki, Swaroop Ghosh
{"title":"目标检测中量子近似优化算法的层次改进(特邀论文)","authors":"Junde Li, M. Alam, Abdullah Ash-Saki, Swaroop Ghosh","doi":"10.1109/ISQED48828.2020.9136973","DOIUrl":null,"url":null,"abstract":"Quantum Approximate Optimization Algorithm (QAOA) provides approximate solution to combinatorial optimization problems. It encodes the cost function using a $p$ -level quantum circuit where each level consists a problem Hamiltonian followed by a mixing Hamiltonian. Despite the promises, few real-world applications (besides the pedagogical MaxCut problem) have exploited QAOA. The success of QAOA relies on the classical optimizer, variational parameter setting, and quantum circuit design and compilation. In this study, we implement QAOA and analyze its performance for a broader Quadratic Unconstrained Binary Optimization (QUBO) formulation to solve real-word applications such as, partially occluded object detection problem. Furthermore, we analyze the effects of above influential factors on QAOA performance. We propose a 3-level improvement of hybrid quantum-classical optimization for object detection. We achieve more than 13X execution speedup by choosing L-BFGS-B as classical optimizer at the first level and 5.50X additional speedup by exploiting parameter symmetry and more than 1.23X acceleration using parameter regression at the second level. We empirically show that the circuit will achieve better fidelity by optimally rescheduling gate operations (especially for deeper circuits) at the third level.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Improvement of Quantum Approximate Optimization Algorithm for Object Detection: (Invited Paper)\",\"authors\":\"Junde Li, M. Alam, Abdullah Ash-Saki, Swaroop Ghosh\",\"doi\":\"10.1109/ISQED48828.2020.9136973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Approximate Optimization Algorithm (QAOA) provides approximate solution to combinatorial optimization problems. It encodes the cost function using a $p$ -level quantum circuit where each level consists a problem Hamiltonian followed by a mixing Hamiltonian. Despite the promises, few real-world applications (besides the pedagogical MaxCut problem) have exploited QAOA. The success of QAOA relies on the classical optimizer, variational parameter setting, and quantum circuit design and compilation. In this study, we implement QAOA and analyze its performance for a broader Quadratic Unconstrained Binary Optimization (QUBO) formulation to solve real-word applications such as, partially occluded object detection problem. Furthermore, we analyze the effects of above influential factors on QAOA performance. We propose a 3-level improvement of hybrid quantum-classical optimization for object detection. We achieve more than 13X execution speedup by choosing L-BFGS-B as classical optimizer at the first level and 5.50X additional speedup by exploiting parameter symmetry and more than 1.23X acceleration using parameter regression at the second level. We empirically show that the circuit will achieve better fidelity by optimally rescheduling gate operations (especially for deeper circuits) at the third level.\",\"PeriodicalId\":225828,\"journal\":{\"name\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED48828.2020.9136973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9136973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

量子近似优化算法(QAOA)为组合优化问题提供了近似解。它使用$p$级量子电路对成本函数进行编码,其中每个级别由一个问题哈密顿量和一个混合哈密顿量组成。尽管有这些承诺,但很少有实际应用(除了教学上的MaxCut问题)利用了QAOA。QAOA的成功依赖于经典优化器、变分参数设置和量子电路的设计与编译。在这项研究中,我们实现了QAOA,并分析了它在更广泛的二次无约束二进制优化(QUBO)公式中的性能,以解决现实世界的应用,如部分遮挡的目标检测问题。进一步分析了上述影响因素对QAOA绩效的影响。我们提出了一种用于目标检测的混合量子经典优化的3级改进。我们在第一级选择L-BFGS-B作为经典优化器,实现了超过13X的执行加速,通过利用参数对称性实现了5.50X的额外加速,在第二级使用参数回归实现了超过1.23X的加速。我们的经验表明,通过在第三层优化重新调度门操作(特别是对于更深的电路),电路将获得更好的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Improvement of Quantum Approximate Optimization Algorithm for Object Detection: (Invited Paper)
Quantum Approximate Optimization Algorithm (QAOA) provides approximate solution to combinatorial optimization problems. It encodes the cost function using a $p$ -level quantum circuit where each level consists a problem Hamiltonian followed by a mixing Hamiltonian. Despite the promises, few real-world applications (besides the pedagogical MaxCut problem) have exploited QAOA. The success of QAOA relies on the classical optimizer, variational parameter setting, and quantum circuit design and compilation. In this study, we implement QAOA and analyze its performance for a broader Quadratic Unconstrained Binary Optimization (QUBO) formulation to solve real-word applications such as, partially occluded object detection problem. Furthermore, we analyze the effects of above influential factors on QAOA performance. We propose a 3-level improvement of hybrid quantum-classical optimization for object detection. We achieve more than 13X execution speedup by choosing L-BFGS-B as classical optimizer at the first level and 5.50X additional speedup by exploiting parameter symmetry and more than 1.23X acceleration using parameter regression at the second level. We empirically show that the circuit will achieve better fidelity by optimally rescheduling gate operations (especially for deeper circuits) at the third level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信