大规模经济负荷调度问题的在线选择进化超启发式算法

E. Sopov, S. Videnin
{"title":"大规模经济负荷调度问题的在线选择进化超启发式算法","authors":"E. Sopov, S. Videnin","doi":"10.1109/InfoTech.2019.8860884","DOIUrl":null,"url":null,"abstract":"The economic load dispatch (ELD) problem is known as a hard optimization problem in the field of power system planning and control. Evolutionary algorithms (EAs) have demonstrated high performance in solving ELD problems with the number of power generator up to 40, but they lose their efficiency with high dimensionalities. In this study, we have proposed and have estimated the performance of a selective hyperheuristic for the online synthesis of an optimization algorithm based on large-scale optimization approaches.","PeriodicalId":179336,"journal":{"name":"2019 International Conference on Information Technologies (InfoTech)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Selective Evolutionary Hyperheuristic for Large Scale Economic Load Dispatch Problem\",\"authors\":\"E. Sopov, S. Videnin\",\"doi\":\"10.1109/InfoTech.2019.8860884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The economic load dispatch (ELD) problem is known as a hard optimization problem in the field of power system planning and control. Evolutionary algorithms (EAs) have demonstrated high performance in solving ELD problems with the number of power generator up to 40, but they lose their efficiency with high dimensionalities. In this study, we have proposed and have estimated the performance of a selective hyperheuristic for the online synthesis of an optimization algorithm based on large-scale optimization approaches.\",\"PeriodicalId\":179336,\"journal\":{\"name\":\"2019 International Conference on Information Technologies (InfoTech)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Information Technologies (InfoTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InfoTech.2019.8860884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information Technologies (InfoTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InfoTech.2019.8860884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经济负荷调度问题是电力系统规划与控制领域的一个难优化问题。进化算法(EAs)在求解发电机数量达40个的ELD问题上表现出了良好的性能,但在高维情况下效率低下。在这项研究中,我们提出并估计了基于大规模优化方法的在线综合优化算法的选择性超启发式的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Selective Evolutionary Hyperheuristic for Large Scale Economic Load Dispatch Problem
The economic load dispatch (ELD) problem is known as a hard optimization problem in the field of power system planning and control. Evolutionary algorithms (EAs) have demonstrated high performance in solving ELD problems with the number of power generator up to 40, but they lose their efficiency with high dimensionalities. In this study, we have proposed and have estimated the performance of a selective hyperheuristic for the online synthesis of an optimization algorithm based on large-scale optimization approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信