基于部分WCET分析和多保留时间STT-RAM的节能内存映射

Rabab Bouziane, Erven Rohou, A. Gamatie
{"title":"基于部分WCET分析和多保留时间STT-RAM的节能内存映射","authors":"Rabab Bouziane, Erven Rohou, A. Gamatie","doi":"10.1145/3273905.3273908","DOIUrl":null,"url":null,"abstract":"Energy-efficiency has become one major challenge in both embedded and high-performance computing. Different approaches have been investigated to solve the challenge, e.g., heterogeneous multicore, system runtime and device-level power management. This paper targets emerging nonvolatile memories (NVMs), through Spin-Transfer Torque RAM (STT-RAM), which inherently have quasi-null leakage. This enables to reduce the static power consumption, which tends to become dominant in modern systems. The usage of NVM in memory hierarchy comes however at the cost of expensive write operations in terms of latency and energy. In order to mitigate this detrimental feature, this paper leverages the notion of delta worst-case execution time (δ-WCET), which consists of partial WCET estimates. From program analysis, δ-WCETs are determined and used to safely allocate data to NVM memory banks with variable data retention times. The δ-WCET analysis computes the WCET between any two locations in a function code, i.e., between basic blocks or instructions. Our approach is validated on the Mälardalen benchmark suite and significant memory dynamic energy reductions (up to 80 %, and 66 % on average) are reported.","PeriodicalId":236964,"journal":{"name":"Proceedings of the 26th International Conference on Real-Time Networks and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Energy-Efficient Memory Mappings based on Partial WCET Analysis and Multi-Retention Time STT-RAM\",\"authors\":\"Rabab Bouziane, Erven Rohou, A. Gamatie\",\"doi\":\"10.1145/3273905.3273908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficiency has become one major challenge in both embedded and high-performance computing. Different approaches have been investigated to solve the challenge, e.g., heterogeneous multicore, system runtime and device-level power management. This paper targets emerging nonvolatile memories (NVMs), through Spin-Transfer Torque RAM (STT-RAM), which inherently have quasi-null leakage. This enables to reduce the static power consumption, which tends to become dominant in modern systems. The usage of NVM in memory hierarchy comes however at the cost of expensive write operations in terms of latency and energy. In order to mitigate this detrimental feature, this paper leverages the notion of delta worst-case execution time (δ-WCET), which consists of partial WCET estimates. From program analysis, δ-WCETs are determined and used to safely allocate data to NVM memory banks with variable data retention times. The δ-WCET analysis computes the WCET between any two locations in a function code, i.e., between basic blocks or instructions. Our approach is validated on the Mälardalen benchmark suite and significant memory dynamic energy reductions (up to 80 %, and 66 % on average) are reported.\",\"PeriodicalId\":236964,\"journal\":{\"name\":\"Proceedings of the 26th International Conference on Real-Time Networks and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th International Conference on Real-Time Networks and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3273905.3273908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th International Conference on Real-Time Networks and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3273905.3273908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

能源效率已经成为嵌入式和高性能计算的一个主要挑战。已经研究了不同的方法来解决这一挑战,例如,异构多核、系统运行和设备级电源管理。本文针对新兴的非易失性存储器(nvm),通过自旋转移扭矩RAM (STT-RAM),其固有的准零泄漏。这可以减少静态功耗,这在现代系统中占主导地位。然而,在内存层次结构中使用NVM是以昂贵的写操作为代价的,在延迟和能量方面。为了减轻这个不利的特征,本文利用增量最坏情况执行时间(δ-WCET)的概念,它由部分WCET估计组成。从程序分析中,确定了δ- wcet,并使用它将数据安全地分配给具有可变数据保留时间的NVM内存库。δ-WCET分析计算函数代码中任意两个位置之间,即基本块或指令之间的WCET。我们的方法在Mälardalen基准套件上进行了验证,并报告了显着的内存动态能量降低(高达80%,平均66%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Memory Mappings based on Partial WCET Analysis and Multi-Retention Time STT-RAM
Energy-efficiency has become one major challenge in both embedded and high-performance computing. Different approaches have been investigated to solve the challenge, e.g., heterogeneous multicore, system runtime and device-level power management. This paper targets emerging nonvolatile memories (NVMs), through Spin-Transfer Torque RAM (STT-RAM), which inherently have quasi-null leakage. This enables to reduce the static power consumption, which tends to become dominant in modern systems. The usage of NVM in memory hierarchy comes however at the cost of expensive write operations in terms of latency and energy. In order to mitigate this detrimental feature, this paper leverages the notion of delta worst-case execution time (δ-WCET), which consists of partial WCET estimates. From program analysis, δ-WCETs are determined and used to safely allocate data to NVM memory banks with variable data retention times. The δ-WCET analysis computes the WCET between any two locations in a function code, i.e., between basic blocks or instructions. Our approach is validated on the Mälardalen benchmark suite and significant memory dynamic energy reductions (up to 80 %, and 66 % on average) are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信